Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Judyann Wiltsie is active.

Publication


Featured researches published by Judyann Wiltsie.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Anthrax lethal factor inhibition

W. L. Shoop; Yusheng Xiong; Judyann Wiltsie; Andrea Woods; Jian Guo; James V. Pivnichny; T. Felcetto; B. F. Michael; Alka Bansal; Richard T. Cummings; Barry R. Cunningham; A. M. Friedlander; Cameron M. Douglas; S. B. Patel; Douglas Wisniewski; G. Scapin; Scott P. Salowe; Dennis M. Zaller; Kevin T. Chapman; Edward M. Scolnick; Dennis M. Schmatz; Kenneth F. Bartizal; Malcolm Maccoss; Jeffrey D. Hermes

The primary virulence factor of Bacillus anthracis is a secreted zinc-dependent metalloprotease toxin known as lethal factor (LF) that is lethal to the host through disruption of signaling pathways, cell destruction, and circulatory shock. Inhibition of this proteolytic-based LF toxemia could be expected to provide therapeutic value in combination with an antibiotic during and immediately after an active anthrax infection. Herein is shown the crystal structure of an intimate complex between a hydroxamate, (2R)-2-[(4-fluoro-3-methylphenyl)sulfonylamino]-N-hydroxy-2-(tetrahydro-2H-pyran-4-yl)acetamide, and LF at the LF-active site. Most importantly, this molecular interaction between the hydroxamate and the LF active site resulted in (i) inhibited LF protease activity in an enzyme assay and protected macrophages against recombinant LF and protective antigen in a cell-based assay, (ii) 100% protection in a lethal mouse toxemia model against recombinant LF and protective antigen, (iii) ≈50% survival advantage to mice given a lethal challenge of B. anthracis Sterne vegetative cells and to rabbits given a lethal challenge of B. anthracis Ames spores and doubled the mean time to death in those that died in both species, and (iv) 100% protection against B. anthracis spore challenge when used in combination therapy with ciprofloxacin in a rabbit “point of no return” model for which ciprofloxacin alone provided 50% protection. These results indicate that a small molecule, hydroxamate LF inhibitor, as revealed herein, can ameliorate the toxemia characteristic of an active B. anthracis infection and could be a vital adjunct to our ability to combat anthrax.


Eukaryotic Cell | 2002

Toxoplasma gondii Cyclic GMP-Dependent Kinase: Chemotherapeutic Targeting of an Essential Parasite Protein Kinase

Robert G.K. Donald; John J. Allocco; Suresh B. Singh; Bakela Nare; Scott P. Salowe; Judyann Wiltsie; Paul A. Liberator

ABSTRACT The trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl]pyridine (compound 1) has in vivo activity against the apicomplexan parasites Toxoplasma gondii and Eimeria tenella in animal models. The presumptive molecular target of this compound in E. tenella is cyclic GMP-dependent protein kinase (PKG). Native PKG purified from T. gondii has kinetic and pharmacologic properties similar to those of the E. tenella homologue, and both have been functionally expressed as recombinant proteins in T. gondii. Computer modeling of parasite PKG was used to predict catalytic site amino acid residues that interact with compound 1. The recombinant laboratory-generated mutants T. gondii PKG T761Q or T761M and the analogous E. tenella T770 alleles have reduced binding affinity for, and are not inhibited by, compound 1. By all other criteria, PKG with this class of catalytic site substitution is indistinguishable from wild-type enzyme. A genetic disruption of T. gondii PKG can only be achieved if a complementing copy of PKG is provided in trans, arguing that PKG is an essential protein. Strains of T. gondii, disrupted at the genomic PKG locus and dependent upon the T. gondii T761-substituted PKGs, are as virulent as wild type in mice. However, unlike mice infected with wild-type T. gondii that are cured by compound 1, mice infected with the laboratory-generated strains of T. gondii do not respond to treatment. We conclude that PKG represents the primary molecular target responsible for the antiparasitic efficacy of compound 1.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A peptide-based fluorescence resonance energy transfer assay for Bacillus anthracis lethal factor protease

Richard T. Cummings; Scott P. Salowe; Barry R. Cunningham; Judyann Wiltsie; Young Whan Park; Lisa M. Sonatore; Douglas Wisniewski; Cameron M. Douglas; Jeffrey D. Hermes; Edward M. Scolnick

A fluorescence resonance energy transfer assay has been developed for monitoring Bacillus anthracis lethal factor (LF) protease activity. A fluorogenic 16-mer peptide based on the known LF protease substrate MEK1 was synthesized and found to be cleaved by the enzyme at the anticipated site. Extension of this work to a fluorogenic 19-mer peptide, derived, in part, from a consensus sequence of known LF protease targets, produced a much better substrate, cleaving approximately 100 times more efficiently. This peptide sequence was modified further on resin to incorporate donor/quencher pairs to generate substrates for use in fluorescence resonance energy transfer-based appearance assays. All peptides cleaved at similar rates with signal/background ranging from 9–16 at 100% turnover. One of these substrates, denoted (Cou)Consensus(K(QSY-35)GG)-NH2, was selected for additional assay optimization. A plate-based assay requiring only low nanomolar levels of enzyme was developed for screening and inhibitor characterization.


Chemistry & Biology | 2008

PAP Inhibitor with In Vivo Efficacy Identified by Candida albicans Genetic Profiling of Natural Products

Bo Jiang; Deming Xu; John J. Allocco; Craig A. Parish; John Davison; Karynn Veillette; Susan Sillaots; Wenqi Hu; Roberto Rodriguez-Suarez; Steve Trosok; Li Zhang; Yang Li; Fariba Rahkhoodaee; Tara Ransom; Nick Martel; Hao Wang; Daniel Gauvin; Judyann Wiltsie; Douglas Wisniewski; Scott P. Salowe; Jennifer Nielsen Kahn; Ming Jo Hsu; Robert A. Giacobbe; George K. Abruzzo; Amy M. Flattery; Charles Gill; Phil Youngman; Kenneth E. Wilson; Gerald F. Bills; Gonzalo Platas

Natural products provide an unparalleled source of chemical scaffolds with diverse biological activities and have profoundly impacted antimicrobial drug discovery. To further explore the full potential of their chemical diversity, we survey natural products for antifungal, target-specific inhibitors by using a chemical-genetic approach adapted to the human fungal pathogen Candida albicans and demonstrate that natural-product fermentation extracts can be mechanistically annotated according to heterozygote strain responses. Applying this approach, we report the discovery and characterization of a natural product, parnafungin, which we demonstrate, by both biochemical and genetic means, to inhibit poly(A) polymerase. Parnafungin displays potent and broad spectrum activity against diverse, clinically relevant fungal pathogens and reduces fungal burden in a murine model of disseminated candidiasis. Thus, mechanism-of-action determination of crude fermentation extracts by chemical-genetic profiling brings a powerful strategy to natural-product-based drug discovery.


Bioorganic & Medicinal Chemistry Letters | 2012

Kibdelomycin A, a congener of kibdelomycin, derivatives and their antibacterial activities.

Sheo B. Singh; Michael A. Goetz; Scott K. Smith; Deborah L. Zink; Jon D. Polishook; Russell Onishi; Scott P. Salowe; Judyann Wiltsie; John J. Allocco; Janet M. Sigmund; Karen Dorso; Mercedes de la Cruz; Jesús Martín; Francisca Vicente; Olga Genilloud; Robert G.K. Donald; John W. Phillips

Emergence of bacterial resistance has eroded the effectiveness of many life saving antibiotics leading to an urgent need for new chemical classes of antibacterial agents. We have applied a Staphylococcus aureus fitness test strategy to natural products screening to meet this challenge. In this paper we report the discovery of kibdelomycin A, a demethylated congener of kibdelomycin, the representative of a novel class of antibiotics produced by a new strain of Kibdelosporangium. Kibdelomycin A is a potent inhibitor of DNA gyrase and topoisomerase IV, inhibits DNA synthesis and shows whole cell antibiotic activity, albeit, less potently than kibdelomycin. Kibdelomycin C-33 acetate and tetrahydro-bisdechloro derivatives of kibdelomycin were prepared which helped define a basic SAR of the family.


Bioorganic & Medicinal Chemistry Letters | 2014

Mineralocorticoid receptor antagonists: Identification of heterocyclic amide replacements in the oxazolidinedione series

Jason M. Cox; Hong D. Chu; Christine Yang; Hong C. Shen; Zhicai Wu; Jaume Balsells; Alejandro Crespo; Patricia Brown; Beata Zamlynny; Judyann Wiltsie; Joseph Clemas; Jack Gibson; Lisa Contino; JeanMarie Lisnock; Gaochao Zhou; Margarita Garcia-Calvo; Thomas J. Bateman; Ling Xu; Xinchun Tong; Martin Crook; Peter J. Sinclair

Novel potent and selective mineralocorticoid receptor antagonists were identified, utilizing heterocyclic amide replacements in the oxazolidinedione series. Structure-activity relationship (SAR) efforts focused on improving lipophilic ligand efficiency (LLE) while maintaining nuclear hormone receptor selectivity and reasonable pharmacokinetic profiles.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of novel oxazolidinedione derivatives as potent and selective mineralocorticoid receptor antagonists.

Christine Yang; Hong C. Shen; Zhicai Wu; Hong D. Chu; Jason M. Cox; Jaume Balsells; Alejandro Crespo; Patricia Brown; Beata Zamlynny; Judyann Wiltsie; Joseph Clemas; Jack Gibson; Lisa Contino; JeanMarie Lisnock; Gaochao Zhou; Margarita Garcia-Calvo; Thomas J. Bateman; Ling Xu; Xinchun Tong; Martin Crook; Peter J. Sinclair

Novel oxazolidinedione analogs were discovered as potent and selective mineralocorticoid receptor (MR) antagonists. Structure-activity relationship (SAR) studies were focused on improving the potency and microsomal stability. Selected compounds demonstrated excellent MR activity, reasonable nuclear hormone receptor selectivity, and acceptable rat pharmacokinetics.


Journal of Biological Chemistry | 2009

The Catalytic Flexibility of tRNAIle-lysidine Synthetase Can Generate Alternative tRNA Substrates for Isoleucyl-tRNA Synthetase

Scott P. Salowe; Judyann Wiltsie; Julio C. Hawkins; Lisa M. Sonatore

Bacteria decode the isoleucine codon AUA using a tRNA species that is posttranscriptionally modified at the wobble position of the anticodon with a lysine-containing cytidine derivative called lysidine. The lysidine modification of tRNAIle2 is an essential identity determinant for proper aminoacylation by isoleucyl tRNA synthetase (IleRS) and codon recognition on the ribosome. The ATP- and lysine-dependent formation of lysidine is catalyzed by tRNAIle-lysidine synthetase. Using the purified recombinant enzyme from Escherichia coli and an in vitro transcribed tRNA substrate, we have confirmed that lysidine modification is both necessary and sufficient to convert tRNAIle2 into a substrate for IleRS. A series of lysine analogs were tested as potential inhibitors during the mechanistic characterization of tRNAIle-lysidine synthetase. Gel electrophoresis revealed that many of these analogs, including some simple alkyl amines, were alternative substrates. Incorporation of these amines into alternative tRNA products was confirmed by mass spectrometry. The availability of tRNAIle2 with differential modifications enabled an exploration of the structural requirements of the anticodon for aminoacylation by methionyl tRNA synthetase and IleRS. All of the modifications were effective at creating negative determinants for methionyl tRNA synthetase and positive determinants for IleRS, although the tolerance of IleRS differed between the enzymes from E. coli and Bacillus subtilis.


ACS Medicinal Chemistry Letters | 2014

Discovery of a Potent and Selective DGAT1 Inhibitor with a Piperidinyl-oxy-cyclohexanecarboxylic Acid Moiety.

Shuwen He; Qingmei Hong; Zhong Lai; David X. Yang; Pauline C. Ting; Jeffrey T. Kuethe; Timothy A. Cernak; Kevin D. Dykstra; Donald M. Sperbeck; Zhicai Wu; Yang Yu; Ginger X. Yang; Tianying Jian; Jian Liu; Deodial Guiadeen; Arto D. Krikorian; Lisa M. Sonatore; Judyann Wiltsie; Jinqi Liu; Judith N. Gorski; Christine C. Chung; Jack Gibson; JeanMarie Lisnock; Jianying Xiao; Michael Wolff; Sharon Tong; Maria Madeira; Bindhu V. Karanam; Dong-Ming Shen; James M. Balkovec

We report the discovery of a novel series of DGAT1 inhibitors in the benzimidazole class with a piperdinyl-oxy-cyclohexanecarboxylic acid moiety. This novel series possesses significantly improved selectivity against the A2A receptor, no ACAT1 off-target activity at 10 μM, and higher aqueous solubility and free fraction in plasma as compared to the previously reported pyridyl-oxy-cyclohexanecarboxylic acid series. In particular, 5B was shown to possess an excellent selectivity profile by screening it against a panel of more than 100 biological targets. Compound 5B significantly reduces lipid excursion in LTT in mouse and rat, demonstrates DGAT1 mediated reduction of food intake and body weight in mice, is negative in a 3-strain Ames test, and appears to distribute preferentially in the liver and the intestine in mice. We believe this lead series possesses significant potential to identify optimized compounds for clinical development.


Bioorganic & Medicinal Chemistry Letters | 2014

Pyrazoles as non-classical bioisosteres in prolylcarboxypeptidase (PrCP) inhibitors

Thomas H. Graham; Min Shu; Andreas Verras; Qing Chen; Margarita Garcia-Calvo; Xiaohua Li; JeanMarie Lisnock; Xinchun Tong; Elaine C. Tung; Judyann Wiltsie; Jeffrey J. Hale; Shirly Pinto; Dong-Ming Shen

Bioisosteres are integral components of modern pharmaceutical research that allow structural optimization to maximize in vivo efficacy and minimize adverse effects by selectively modifying pharmacodynamic, pharmacokinetic and physicochemical properties. A recent medicinal chemistry campaign focused on identifying small molecule inhibitors of prolylcarboxypeptidase (PrCP) initiated an investigation into the use of pyrazoles as bioisosteres for amides. The results indicate that pyrazoles are suitable bioisosteric replacements of amide functional groups. The study is an example of managing bioisosteric replacement by incorporating subsequent structural modifications to maintain potency against the selected target. A heuristic model for an embedded pharmacophore is also described.

Researchain Logo
Decentralizing Knowledge