Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Margarita Garcia-Calvo is active.

Publication


Featured researches published by Margarita Garcia-Calvo.


Journal of Biological Chemistry | 1997

A Combinatorial Approach Defines Specificities of Members of the Caspase Family and Granzyme B FUNCTIONAL RELATIONSHIPS ESTABLISHED FOR KEY MEDIATORS OF APOPTOSIS

Nancy A. Thornberry; Thomas A. Rano; Erin P. Peterson; Dita M. Rasper; Tracy Timkey; Margarita Garcia-Calvo; Vicky M. Houtzager; Penny A. Nordstrom; Sophie Roy; John P. Vaillancourt; Kevin T. Chapman; Donald W. Nicholson

There is compelling evidence that members of the caspase (interleukin-1β converting enzyme/CED-3) family of cysteine proteases and the cytotoxic lymphocyte-derived serine protease granzyme B play essential roles in mammalian apoptosis. Here we use a novel method employing a positional scanning substrate combinatorial library to rigorously define their individual specificities. The results divide these proteases into three distinct groups and suggest that several have redundant functions. The specificity of caspases 2, 3, and 7 andCaenorhabditis elegans CED-3 (DEXD) suggests that all of these enzymes function to incapacitate essential homeostatic pathways during the effector phase of apoptosis. In contrast, the optimal sequence for caspases 6, 8, and 9 and granzyme B ((I/L/V)EXD) resembles activation sites in effector caspase proenzymes, consistent with a role for these enzymes as upstream components in a proteolytic cascade that amplifies the death signal.


Cell Death & Differentiation | 1999

PURIFICATION AND CATALYTIC PROPERTIES OF HUMAN CASPASE FAMILY MEMBERS

Margarita Garcia-Calvo; Erin P. Peterson; Dita M. Rasper; John P. Vaillancourt; Robert Zamboni; Donald W. Nicholson; Nancy A. Thornberry

Members of the caspase family of cysteine proteases are known to be key mediators of mammalian inflammation and apoptosis. To better understand the catalytic properties of these enzymes, and to facilitate the identification of selective inhibitors, we have systematically purified and biochemically characterized ten homologues of human origin (caspases 1–10). The method used for production of most of these enzymes involves folding of active enzymes from their constituent subunits which are expressed separately in E. coli, followed by ion exchange chromatography. In cases where it was not possible to use this method (caspase-6 and -10), the enzymes were instead expressed as soluble proteins in E. coli, and partially purified by ion exchange chromatography. Based on the optimal tetrapeptide recognition motif for each enzyme, substrates with the general structure Ac-XEXD-AMC were used to develop continuous fluorometric assays. In some cases, enzymes with virtually identical tetrapeptide specificities have kcat/Km values for fluorogenic substrates that differ by more than 1000-fold. Using these assays, we have investigated the effects of a variety of environmental factors (e.g. pH, NaCl, Ca2+) on the activities of these enzymes. Some of these variables have a profound effect on the rate of catalysis, a finding that may have important biological implications.


Journal of Bioenergetics and Biomembranes | 1991

Use of toxins to study potassium channels

Maria L. Garcia; Antonio Galvez; Margarita Garcia-Calvo; V. Frank King; Jesús Vázquez; Gregory J. Kaczorowski

Potassium channels comprise groups of diverse proteins which can be distinguished according to each members biophysical properties. Some types of K+ channels are blocked with high affinity by specific peptidyl toxins. Three toxins, charybdotoxin, iberiotoxin, and noxiustoxin, which display a high degree of homology in their primary amino acid sequences, have been purified to homogeneity from scorpion venom. While charybdotoxin and noxiustoxin are known to inhibit more than one class of channel (i.e., several Ca2+-activated and voltage-dependent K+ channels), iberiotoxin appears to be a selective blocker of the high-conductance, Ca2+-activated K+ channel that is present in muscle and neuroendocrine tissue. A distinct class of small-conductance Ca2+-activated K+ channel is blocked by two other toxins, apamin and leiurotoxin-1, that share no sequence homology with each other. A family of homologous toxins, the dendrotoxins, have been purified from venom of various related species of snakes. These toxins inhibit several inactivating voltage-dependent K+ channels. Although molecular biology approaches have been employed to identify and characterize several species of voltagegated K+ channels, toxins directed against a particular channel can still be useful in defining the physiological role of that channel in a particular tissue. In addition, for those K+ channels which are not yet successfully probed by molecular biology techniques, toxins can be used as biochemical tools with which to purify the target protein of interest.


Journal of Biological Chemistry | 1997

Khafrefungin, a novel inhibitor of sphingolipid synthesis.

Suzanne M. Mandala; Rosemary A. Thornton; Mark Rosenbach; James A. Milligan; Margarita Garcia-Calvo; Herbert G. Bull; Myra B. Kurtz

In the course of screening for antifungal agents we have discovered a novel compound isolated from an endophytic fungus that inhibits fungal sphingolipid synthesis. Khafrefungin, which is composed of aldonic acid linked via an ester to a C22 modified alkyl chain, has fungicidal activity against Candida albicans,Cryptococcus neoformans, and Saccharomyces cerevisiae. Sphingolipid synthesis is inhibited in these organisms at the step in which phosphoinositol is transferred to ceramide, resulting in accumulation of ceramide and loss of all of the complex sphingolipids. In vitro, khafrefungin inhibits the inositol phosphoceramide synthase of C. albicans with an IC50 of 0.6 nm. Khafrefungin does not inhibit the synthesis of mammalian sphingolipids thus making this the first reported compound that is specific for the fungal pathway.


Journal of Lipid Research | 2010

Biochemical characterization of cholesteryl ester transfer protein inhibitors

Mollie Ranalletta; Kathleen K. Bierilo; Ying Chen; Denise P. Milot; Qing Chen; Elaine Tung; Caroline Houde; Nadine H. Elowe; Margarita Garcia-Calvo; Gene Porter; Suzanne S. Eveland; Betsy Frantz-Wattley; Mike Kavana; George H. Addona; Peter J. Sinclair; Carl P. Sparrow; Edward A. O'Neill; Ken S. Koblan; Ayesha Sitlani; Brian K. Hubbard; Timothy S. Fisher

Cholesteryl ester transfer protein (CETP) has been identified as a novel target for increasing HDL cholesterol levels. In this report, we describe the biochemical characterization of anacetrapib, a potent inhibitor of CETP. To better understand the mechanism by which anacetrapib inhibits CETP activity, its biochemical properties were compared with CETP inhibitors from distinct structural classes, including torcetrapib and dalcetrapib. Anacetrapib and torcetrapib inhibited CETP-mediated cholesteryl ester and triglyceride transfer with similar potencies, whereas dalcetrapib was a significantly less potent inhibitor. Inhibition of CETP by both anacetrapib and torcetrapib was not time dependent, whereas the potency of dalcetrapib significantly increased with extended preincubation. Anacetrapib, torcetrapib, and dalcetrapib compete with one another for binding CETP; however anacetrapib binds reversibly and dalcetrapib covalently to CETP. In addition, dalcetrapib was found to covalently label both human and mouse plasma proteins. Each CETP inhibitor induced tight binding of CETP to HDL, indicating that these inhibitors promote the formation of a complex between CETP and HDL, resulting in inhibition of CETP activity.


Journal of Biological Chemistry | 1998

Rustmicin, a Potent Antifungal Agent, Inhibits Sphingolipid Synthesis at Inositol Phosphoceramide Synthase

Suzanne M. Mandala; Rosemary A. Thornton; James A. Milligan; Mark Rosenbach; Margarita Garcia-Calvo; Herbert G. Bull; Guy H. Harris; George K. Abruzzo; Amy M. Flattery; Charles Gill; Kenneth F. Bartizal; Sarah Dreikorn; Myra B. Kurtz

Rustmicin is a 14-membered macrolide previously identified as an inhibitor of plant pathogenic fungi by a mechanism that was not defined. We discovered that rustmicin inhibits inositol phosphoceramide synthase, resulting in the accumulation of ceramide and the loss of all of the complex sphingolipids. Rustmicin has potent fungicidal activity against clinically important human pathogens that is correlated with its sphingolipid inhibition. It is especially potent against Cryptococcus neoformans, where it inhibits growth and sphingolipid synthesis at concentrations <1 ng/ml and inhibits the enzyme with an IC50 of 70 pm. This inhibition of the membrane-bound enzyme is reversible; moreover, rustmicin is nearly equipotent against the solubilized enzyme. Rustmicin was efficacious in a mouse model for cryptococcosis, but it was less active than predicted from its in vitro potency against this pathogen. Stability and drug efflux were identified as two factors limiting rustmicin’s activity. In the presence of serum, rustmicin rapidly epimerizes at the C-2 position and is converted to a γ-lactone, a product that is devoid of activity. Rustmicin was also found to be a remarkably good substrate for the Saccharomyces cerevisiae multidrug efflux pump encoded by PDR5.


Chemistry & Biology | 2001

The three-dimensional structure of human granzyme B compared to caspase-3, key mediators of cell death with cleavage specificity for aspartic acid in P1

Jennifer Rotonda; Margarita Garcia-Calvo; Herb G. Bull; Wayne M. Geissler; Brian M. McKeever; Christopher A. Willoughby; Nancy A. Thornberry; Joseph W. Becker

BACKGROUND Granzyme B, one of the most abundant granzymes in cytotoxic T-lymphocyte (CTL) granules, and members of the caspase (cysteine aspartyl proteinases) family have a unique cleavage specificity for aspartic acid in P1 and play critical roles in the biochemical events that culminate in cell death. RESULTS We have determined the three-dimensional structure of the complex of the human granzyme B with a potent tetrapeptide aldehyde inhibitor. The Asp-specific S1 subsite of human granzyme B is significantly larger and less charged than the corresponding Asp-specific site in the apoptosis-promoting caspases, and also larger than the corresponding subsite in rat granzyme B. CONCLUSIONS The above differences account for the variation in substrate specificity among granzyme B, other serine proteases and the caspases, and enable the design of specific inhibitors that can probe the physiological functions of these proteins and the disease states with which they are associated.


Journal of Biological Chemistry | 2007

Mouse and Human Granzyme B Have Distinct Tetrapeptide Specificities and Abilities to Recruit the Bid Pathway

Livia Casciola-Rosen; Margarita Garcia-Calvo; Herbert G. Bull; Joseph W. Becker; Tonie Hines; Nancy A. Thornberry; Antony Rosen

Granzyme B is an important mediator of cytotoxic lymphocyte granule-induced death of target cells, accomplishing this through cleavage of Bid and cleavage and activation of caspases as well as direct cleavage of downstream substrates. Significant controversy exists regarding the primary pathways used by granzyme B to induce cell death, perhaps arising from the use of different protease/substrate combinations in different studies. The primary sequence of human, rat, and mouse granzymes B is well conserved, and the substrate specificity and crystal structure of the human and rat proteases are extremely similar. Although little is known about the substrate specificity of mouse granzyme B, recent studies suggest that it may differ significantly from the human protease. In these studies we show that the specificities of human and mouse granzymes B differ significantly. Human and mouse granzyme B cleave species-specific procaspase-3 more efficiently than the unmatched substrates. The distinct specificities of human and mouse granzyme B highlight a previously unappreciated requirement for Asp192 in the acquisition of catalytic activity upon cleavage of procaspase-3 at Asp175. Although human granzyme B efficiently cleaves human or mouse Bid, these substrates are highly resistant to cleavage by the mouse protease, strongly indicating that the Bid pathway is not a major primary mediator of the effects of mouse granzyme B. These studies provide important insights into the substrate specificity and function of the granzyme B pathway in different species and highlight that caution is essential when designing and interpreting experiments with different forms of granzyme B.


Bioorganic & Medicinal Chemistry Letters | 2002

Discovery of potent, selective human granzyme B inhibitors that inhibit CTL mediated apoptosis

Christopher A. Willoughby; Herbert G. Bull; Margarita Garcia-Calvo; Joanne Jiang; Kevin T. Chapman; Nancy A. Thornberry

A novel class of small molecule human granzyme B inhibitors is reported. Compound 20 has a K(i) of 7 nM against human granzyme B and blocks CTL mediated apoptosis with an IC(50) of 3 micromolar.


Nature | 2017

Structural basis for selectivity and diversity in angiotensin II receptors

Haitao Zhang; Gye Won Han; Alexander Batyuk; Andrii Ishchenko; Kate L. White; Nilkanth Patel; Anastasiia Sadybekov; Beata Zamlynny; Michael T. Rudd; Kaspar Hollenstein; Alexandra Tolstikova; Thomas A. White; Mark S. Hunter; Uwe Weierstall; Wei Liu; Kerim Babaoglu; Eric L. Moore; Ryan D. Katz; Jennifer M. Shipman; Margarita Garcia-Calvo; Sujata Sharma; Payal R. Sheth; Stephen M. Soisson; Raymond C. Stevens; Vsevolod Katritch; Vadim Cherezov

The angiotensin II receptors AT1R and AT2R serve as key components of the renin–angiotensin–aldosterone system. AT1R has a central role in the regulation of blood pressure, but the function of AT2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT2R bound to an AT2R-selective ligand and to an AT1R/AT2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or β-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure–activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.

Collaboration


Dive into the Margarita Garcia-Calvo's collaboration.

Researchain Logo
Decentralizing Knowledge