Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jed Ross is active.

Publication


Featured researches published by Jed Ross.


Nature | 2007

Bv8 regulates myeloid-cell-dependent tumour angiogenesis

Farbod Shojaei; Xiumin Wu; Cuiling Zhong; Lanlan Yu; Xiaohuan Liang; Jenny Yao; Dominique Blanchard; Carlos Bais; Franklin Peale; Nicholas van Bruggen; Calvin Ho; Jed Ross; Martha Tan; Richard A. D. Carano; Y. Gloria Meng; Napoleone Ferrara

Bone-marrow-derived cells facilitate tumour angiogenesis, but the molecular mechanisms of this facilitation are incompletely understood. We have previously shown that the related EG-VEGF and Bv8 proteins, also known as prokineticin 1 (Prok1) and prokineticin 2 (Prok2), promote both tissue-specific angiogenesis and haematopoietic cell mobilization. Unlike EG-VEGF, Bv8 is expressed in the bone marrow. Here we show that implantation of tumour cells in mice resulted in upregulation of Bv8 in CD11b+Gr1+ myeloid cells. We identified granulocyte colony-stimulating factor as a major positive regulator of Bv8 expression. Anti-Bv8 antibodies reduced CD11b+Gr1+ cell mobilization elicited by granulocyte colony-stimulating factor. Adenoviral delivery of Bv8 into tumours was shown to promote angiogenesis. Anti-Bv8 antibodies inhibited growth of several tumours in mice and suppressed angiogenesis. Anti-Bv8 treatment also reduced CD11b+Gr1+ cells, both in peripheral blood and in tumours. The effects of anti-Bv8 antibodies were additive to those of anti-Vegf antibodies or cytotoxic chemotherapy. Thus, Bv8 modulates mobilization of CD11b+Gr1+ cells from the bone marrow during tumour development and also promotes angiogenesis locally.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect

Martin O. Bergo; Bryant J. Gavino; Jed Ross; Walter K. Schmidt; Christine Hong; Lonnie V. Kendall; Andreas Mohr; Margarita Meta; Harry K. Genant; Yebin Jiang; Erik R. Wisner; Nicholas van Bruggen; Richard A. D. Carano; Susan Michaelis; Stephen M. Griffey; Stephen G. Young

Zmpste24 is an integral membrane metalloproteinase of the endoplasmic reticulum. Biochemical studies of tissues from Zmpste24-deficient mice (Zmpste24−/−) have indicated a role for Zmpste24 in the processing of CAAX-type prenylated proteins. Here, we report the pathologic consequences of Zmpste24 deficiency in mice. Zmpste24−/− mice gain weight slowly, appear malnourished, and exhibit progressive hair loss. The most striking pathologic phenotype is multiple spontaneous bone fractures—akin to those occurring in mouse models of osteogenesis imperfecta. Cortical and trabecular bone volumes are significantly reduced in Zmpste24−/− mice. Zmpste24−/− mice also manifested muscle weakness in the lower and upper extremities, resembling mice lacking the farnesylated CAAX protein prelamin A. Prelamin A processing was defective both in fibroblasts lacking Zmpste24 and in fibroblasts lacking the CAAX carboxyl methyltransferase Icmt but was normal in fibroblasts lacking the CAAX endoprotease Rce1. Muscle weakness in Zmpste24−/− mice can be reasonably ascribed to defective processing of prelamin A, but the brittle bone phenotype suggests a broader role for Zmpste24 in mammalian biology.


Cancer Cell | 2008

Blocking Neuropilin-2 Function Inhibits Tumor Cell Metastasis

Maresa Caunt; Judy Mak; Wei-Ching Liang; Scott Stawicki; Qi Pan; Raymond K. Tong; Joe Kowalski; Calvin Ho; Hani Bou Reslan; Jed Ross; Leanne Berry; Ian Kasman; Constance Zlot; Zhiyong Cheng; Jennifer Le Couter; Ellen Filvaroff; Greg Plowman; Franklin Peale; Dorothy French; Richard A. D. Carano; Alexander W. Koch; Yan Wu; Ryan J. Watts; Marc Tessier-Lavigne; Anil Bagri

Metastasis, which commonly uses lymphatics, accounts for much of the mortality associated with cancer. The vascular endothelial growth factor (VEGF)-C coreceptor, neuropilin-2 (Nrp2), modulates but is not necessary for developmental lymphangiogenesis, and its significance for metastasis is unknown. An antibody to Nrp2 that blocks VEGFC binding disrupts VEGFC-induced lymphatic endothelial cell migration, but not proliferation, in part independently of VEGF receptor activation. It does not affect established lymphatics in normal adult mice but reduces tumoral lymphangiogenesis and, importantly, functional lymphatics associated with tumors. It also reduces metastasis to sentinel lymph nodes and distant organs, apparently by delaying the departure of tumor cells from the primary tumor. Our results demonstrate that Nrp2, which was originally identified as an axon-guidance receptor, is an attractive target for modulating metastasis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes

Marcin Kowanetz; Xiumin Wu; John C. Lee; Martha Tan; Thijs J. Hagenbeek; Xueping Qu; Lanlan Yu; Jed Ross; Nina Korsisaari; Tim C. Cao; Hani Bou-Reslan; Dara Y. Kallop; Robby M. Weimer; Mary J. C. Ludlam; Joshua S. Kaminker; Zora Modrusan; Nicholas van Bruggen; Franklin Peale; Richard A. D. Carano; Y. Gloria Meng; Napoleone Ferrara

Priming of the organ-specific premetastatic sites is thought to be an important yet incompletely understood step during metastasis. In this study, we show that the metastatic tumors we examined overexpress granulocyte-colony stimulating factor (G-CSF), which expands and mobilizes Ly6G+Ly6C+ granulocytes and facilitates their subsequent homing at distant organs even before the arrival of tumor cells. Moreover, G-CSF–mobilized Ly6G+Ly6C+ cells produce the Bv8 protein, which has been implicated in angiogenesis and mobilization of myeloid cells. Anti–G-CSF or anti-Bv8 antibodies significantly reduced lung metastasis. Transplantation of Bv8 null fetal liver cells into lethally irradiated hosts also reduced metastasis. We identified an unexpected role for Bv8: the ability to stimulate tumor cell migration through activation of one of the Bv8 receptors, prokineticin receptor (PKR)-1. Finally, we show that administration of recombinant G-CSF is sufficient to increase the numbers of Ly6G+Ly6C+ cells in organ-specific metastatic sites and results in enhanced metastatic ability of several tumors.


Cancer Research | 2008

MetMAb, the One-Armed 5D5 Anti-c-Met Antibody, Inhibits Orthotopic Pancreatic Tumor Growth and Improves Survival

Hongkui Jin; Renhui Yang; Zhong Zheng; Mally Romero; Jed Ross; Hani Bou-Reslan; Richard A. D. Carano; Ian Kasman; Elaine Mai; Judy Young; Jiping Zha; Zemin Zhang; Sarajane Ross; Ralph Schwall; Gail Colbern; Mark Merchant

The hepatocyte growth factor (HGF) and its receptor, c-Met, have been implicated in driving proliferation, invasion, and poor prognosis in pancreatic cancer. Here, we investigated the expression of HGF and c-Met in primary pancreatic cancers and described in vitro and in vivo models in which MetMAb, a monovalent antibody against c-Met, was evaluated. First, expression of HGF and MET mRNA was analyzed in 59 primary pancreatic cancers and 51 normal samples, showing that both factors are highly expressed in pancreatic cancer. We next examined HGF responsiveness in pancreatic cancer lines to select lines that proliferate in response to HGF. Based on these studies, two lines were selected for further in vivo model development: BxPC-3 (c-Met(+), HGF(-)) and KP4 (c-Met(+), HGF(+)) cells. As BxPC-3 cells are responsive to exogenous HGF, s.c. tumor xenografts were grown in a paracrine manner with purified human HGF provided by osmotic pumps, wherein MetMAb treatment significantly inhibited tumor growth. KP4 cells are autocrine for HGF and c-Met, and MetMAb strongly inhibited s.c. tumor growth. To better model pancreatic cancer and to enable long-term survival studies, an orthotopic model of KP4 was established. MetMAb significantly inhibited orthotopic KP4 tumor growth in 4-week studies monitored by ultrasound and also improved survival in 90-day studies. MetMAb significantly reduced c-Met phosphorylation in orthotopic KP4 tumors with a concomitant decrease in Ki-67 staining. These data suggest that the HGF/c-Met axis plays an important role in the progression of pancreatic cancer and that targeting c-Met therein may have therapeutic value.


Nature | 2014

Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes

Xiaoting Wang; Naruhisa Ota; Paolo Manzanillo; Lance Kates; Jose Zavala-Solorio; Céline Eidenschenk; Juan Zhang; Justin Lesch; Wyne P. Lee; Jed Ross; Lauri Diehl; Nicholas van Bruggen; Ganesh Kolumam; Wenjun Ouyang

The connection between an altered gut microbiota and metabolic disorders such as obesity, diabetes, and cardiovascular disease is well established. Defects in preserving the integrity of the mucosal barriers can result in systemic endotoxaemia that contributes to chronic low-grade inflammation, which further promotes the development of metabolic syndrome. Interleukin (IL)-22 exerts essential roles in eliciting antimicrobial immunity and maintaining mucosal barrier integrity within the intestine. Here we investigate the connection between IL-22 and metabolic disorders. We find that the induction of IL-22 from innate lymphoid cells and CD4+ T cells is impaired in obese mice under various immune challenges, especially in the colon during infection with Citrobacter rodentium. While innate lymphoid cell populations are largely intact in obese mice, the upregulation of IL-23, a cytokine upstream of IL-22, is compromised during the infection. Consequently, these mice are susceptible to C. rodentium infection, and both exogenous IL-22 and IL-23 are able to restore the mucosal host defence. Importantly, we further unveil unexpected functions of IL-22 in regulating metabolism. Mice deficient in IL-22 receptor and fed with high-fat diet are prone to developing metabolic disorders. Strikingly, administration of exogenous IL-22 in genetically obese leptin-receptor-deficient (db/db) mice and mice fed with high-fat diet reverses many of the metabolic symptoms, including hyperglycaemia and insulin resistance. IL-22 shows diverse metabolic benefits, as it improves insulin sensitivity, preserves gut mucosal barrier and endocrine functions, decreases endotoxaemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. In summary, we identify the IL-22 pathway as a novel target for therapeutic intervention in metabolic diseases.


Cell | 2010

PlGF Blockade Does Not Inhibit Angiogenesis during Primary Tumor Growth

Carlos Bais; Xiumin Wu; Jenny Yao; Suya Yang; Yongping Crawford; Krista McCutcheon; Christine Tan; Ganesh Kolumam; Jean-Michel Vernes; Jeffrey Eastham-Anderson; Peter Haughney; Marcin Kowanetz; Thijs J. Hagenbeek; Ian Kasman; Hani Bou Reslan; Jed Ross; Nick van Bruggen; Richard A. D. Carano; Yu-Ju Gloria Meng; Jo-Anne Hongo; Jean Philippe Stephan; Masabumi Shibuya; Napoleone Ferrara

It has been recently reported that treatment with an anti-placenta growth factor (PlGF) antibody inhibits metastasis and primary tumor growth. Here we show that, although anti-PlGF treatment inhibited wound healing, extravasation of B16F10 cells, and growth of a tumor engineered to overexpress the PlGF receptor (VEGFR-1), neutralization of PlGF using four novel blocking antibodies had no significant effect on tumor angiogenesis in 15 models. Also, genetic ablation of the tyrosine kinase domain of VEGFR-1 in the host did not result in growth inhibition of the anti-VEGF-A sensitive or resistant tumors tested. Furthermore, combination of anti-PlGF with anti-VEGF-A antibodies did not result in greater antitumor efficacy than anti-VEGF-A monotherapy. In conclusion, our data argue against an important role of PlGF during primary tumor growth in most models and suggest that clinical evaluation of anti-PlGF antibodies may be challenging.


Clinical Cancer Research | 2009

Quantifying Antivascular Effects of Monoclonal Antibodies to Vascular Endothelial Growth Factor: Insights from Imaging

James P B O'Connor; Richard A. D. Carano; Andrew R Clamp; Jed Ross; Calvin C K Ho; Alan Jackson; Geoff J.M. Parker; Christopher Rose; Franklin Peale; Michel Friesenhahn; Claire Mitchell; Yvonne Watson; Caleb Roberts; Lynn Hope; Susan Cheung; Hani Bou Reslan; Mary Ann T Go; Glenn Pacheco; Xiumin Wu; Tim C. Cao; Sarajane Ross; Giovanni A. Buonaccorsi; Karen Davies; Jurjees Hasan; Paula Thornton; Olivia del Puerto; Napoleone Ferrara; Nicholas van Bruggen; Gordon C Jayson

Purpose: Little is known concerning the onset, duration, and magnitude of direct therapeutic effects of anti–vascular endothelial growth factor (VEGF) therapies. Such knowledge would help guide the rational development of targeted therapeutics from bench to bedside and optimize use of imaging technologies that quantify tumor function in early-phase clinical trials. Experimental Design: Preclinical studies were done using ex vivo microcomputed tomography and in vivo ultrasound imaging to characterize tumor vasculature in a human HM-7 colorectal xenograft model treated with the anti-VEGF antibody G6-31. Clinical evaluation was by quantitative magnetic resonance imaging in 10 patients with metastatic colorectal cancer treated with bevacizumab. Results: Microcomputed tomography experiments showed reduction in perfused vessels within 24 to 48 h of G6-31 drug administration (P ≤ 0.005). Ultrasound imaging confirmed reduced tumor blood volume within the same time frame (P = 0.048). Consistent with the preclinical results, reductions in enhancing fraction and fractional plasma volume were detected in patient colorectal cancer metastases within 48 h after a single dose of bevacizumab that persisted throughout one cycle of therapy. These effects were followed by resolution of edema (P = 0.0023) and tumor shrinkage in 9 of 26 tumors at day 12. Conclusion: These data suggest that VEGF-specific inhibition induces rapid structural and functional effects with downstream significant antitumor activity within one cycle of therapy. This finding has important implications for the design of early-phase clinical trials that incorporate physiologic imaging. The study shows how animal data help interpret clinical imaging data, an important step toward the validation of image biomarkers of tumor structure and function. (Clin Cancer Res 2009;15(21):6674–82)Purpose Little is known concerning the onset, duration and magnitude of direct therapeutic effects of anti-VEGF therapies. Such knowledge would help guide the rational development of targeted therapeutics from bench to bedside and optimize use of imaging technologies that quantify tumor function in early phase clinical trials.


Cancer Research | 2004

Apo2 Ligand/Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Cooperates with Chemotherapy to Inhibit Orthotopic Lung Tumor Growth and Improve Survival

Hongkui Jin; Renhui Yang; Sharon Fong; Klara Totpal; David A. Lawrence; Zhong Zheng; Jed Ross; Hartmut Koeppen; Ralph Schwall; Avi Ashkenazi

Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a tumor necrosis factor superfamily member that induces apoptosis through the death receptors DR4 and/or DR5 in various cancer cell types but not in most normal cells. Several lung cancer cell lines express DR4 and DR5 and undergo apoptosis in vitro in response to Apo2L/TRAIL. We investigated the efficacy of recombinant soluble human Apo2L/TRAIL and its interaction with chemotherapy in xenograft models based on human NCI-H460 non-small cell lung carcinoma cells. In vitro, Taxol enhanced caspase activation and apoptosis induction by Apo2L/TRAIL. In vivo, Apo2L/TRAIL or Taxol plus carboplatin chemotherapy partially delayed progression of established subcutaneous tumor xenografts, whereas combined treatment caused tumor regression and a substantially longer growth delay. Apo2L/TRAIL, chemotherapy, or the combination of both inhibited growth of preformed orthotopic lung parenchymal tumors versus control by 60%, 57%, or 97%, respectively (all P < 0.01; n = 8–10). Furthermore, combination treatment improved day-90 survival relative to control (7 of 15 versus 1 of 15; P = 0.0003 by Mantel-Cox) as well as to Apo2L/TRAIL (3 of 14; P = 0.031) or chemotherapy (3 of 15; P = 0.035). These studies provide evidence for in vivo activity of Apo2L/TRAIL against lung tumor xenografts and underscore the potential of this ligand for advancing current lung cancer treatment strategies.


Magnetic Resonance in Medicine | 2004

Quantification of tumor tissue populations by multispectral analysis

Richard A. D. Carano; Adrienne L. Ross; Jed Ross; Simon Williams; Hartmut Koeppen; Ralph Schwall; Nicholas van Bruggen

Tumor heterogeneity complicates the quantification of a therapeutic response by MRI. To address this issue, a novel approach has been developed that combines MR diffusion imaging with multispectral (MS) analysis to quantify tumor tissue populations. K‐means (KM) clustering of the apparent diffusion coefficient (ADC), T2, and proton density (M0) was employed to estimate the volumes of viable tumor tissue, necrosis, and neighboring subcutaneous adipose tissue in a human colorectal tumor xenograft mouse model. In a second set of experiments, the temporal evolution of the MS tissue classes in response to therapeutic intervention Apo2L/TRAIL and CPT‐11 was observed. The multiple parameters played complementary roles in identifying the various tissues. The ADC was the dominant parameter for identifying regions of necrosis, whereas T2 identified two necrotic subpopulations, and M0 contributed to the differentiation of viable tumor from subcutaneous adipose tissue. MS viable tumor estimates (mean volume = 275 ± 147 mm3) were highly correlated (r = 0.81, P < 0.01) with histological estimates (117 ± 51 mm3). In the treatment study, MS viable tumor volume (at day 10) was 77 ± 67 mm3 for the Apo2L/TRAIL+CPT‐11 group, and was significantly reduced relative to the control group (292 ± 127 mm3, P < 0.01). This method shows promise as a means of detecting an early therapeutic response in vivo. Magn Reson Med 51:542–551, 2004.

Collaboration


Dive into the Jed Ross's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge