Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeff Klein is active.

Publication


Featured researches published by Jeff Klein.


Nature | 2009

Over half of the far-infrared background light comes from galaxies at z ≥ 1.2

Mark J. Devlin; Peter A. R. Ade; Itziar Aretxaga; James J. Bock; Edward L. Chapin; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Gaelen Marsden; Peter G. Martin; Philip Daniel Mauskopf; Lorenzo Moncelsi; C. B. Netterfield; Henry Ngo; Luca Olmi; Enzo Pascale; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 ≤ z ≤ 4, these massive submillimetre galaxies go through a phase characterized by optically obscured star formation at rates several hundred times that in the local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 μm in the rest frame. At 1 ≤ z ≤ 4, the peak is redshifted to wavelengths between 200 and 500 μm. The cumulative effect of these galaxies is to yield extragalactic optical and far-infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 μm. Combining our results at 500 μm with those at 24 μm, we determine that all of the FIRB comes from individual galaxies, with galaxies at z ≥ 1.2 accounting for 70% of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.


The Astrophysical Journal | 2009

BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND

Gaelen Marsden; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; Simon R. Dicker; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Philip Daniel Mauskopf; B. Magnelli; Lorenzo Moncelsi; C. B. Netterfield; Henry Ngo; Luca Olmi; Enzo Pascale; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has made 1 deg2, deep, confusion-limited maps at three different bands, centered on the Great Observatories Origins Deep Survey South Field. By calculating the covariance of these maps with catalogs of 24 μm sources from the Far-Infrared Deep Extragalactic Legacy Survey, we have determined that the total submillimeter intensities are 8.60 ± 0.59, 4.93 ± 0.34, and 2.27 ± 0.20 nW m–2 sr–1 at 250, 350, and 500 μm, respectively. These numbers are more precise than previous estimates of the cosmic infrared background (CIB) and are consistent with 24 μm-selected galaxies generating the full intensity of the CIB. We find that the fraction of the CIB that originates from sources at z ≥ 1.2 increases with wavelength, with 60% from high-redshift sources at 500 μm. At all BLAST wavelengths, the relative intensity of high-z sources is higher for 24 μm-faint sources than that for 24 μm-bright sources. Galaxies identified as active galactic nuclei (AGNs) by their Infrared Array Camera colors are 1.6-2.6 times brighter than the average population at 250-500 μm, consistent with what is found for X-ray-selected AGNs. BzK-selected galaxies are found to be moderately brighter than typical 24 μm-selected galaxies in the BLAST bands. These data provide high-precision constraints for models of the evolution of the number density and intensity of star-forming galaxies at high redshift.


Physical Review Letters | 2011

Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope.

Sudeep Das; Blake D. Sherwin; Paula Aguirre; J. W. Appel; J. Richard Bond; C. Sofia Carvalho; Mark J. Devlin; Joanna Dunkley; Rolando Dünner; Thomas Essinger-Hileman; Joseph W. Fowler; Amir Hajian; M. Halpern; Matthew Hasselfield; Adam D. Hincks; Renée Hlozek; K. M. Huffenberger; John P. Hughes; K. D. Irwin; Jeff Klein; Arthur Kosowsky; Robert H. Lupton; Tobias A. Marriage; Danica Marsden; F. Menanteau; Kavilan Moodley; Michael D. Niemack; Michael R. Nolta; Lyman A. Page; Lucas Parker

We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.


The Astrophysical Journal | 2011

The Atacama Cosmology Telescope: a measurement of the cosmic microwave background power spectrum at 148 and 218 GHz from the 2008 southern survey

Sudeep Das; Tobias A. Marriage; Peter A. R. Ade; Paula Aguirre; M. Amiri; J. W. Appel; L. Felipe Barrientos; E. S. Battistelli; John R. Bond; Ben Brown; B. Burger; J. A. Chervenak; Mark J. Devlin; Simon R. Dicker; W. Bertrand Doriese; Joanna Dunkley; Rolando Dünner; Thomas Essinger-Hileman; R. P. Fisher; Joseph W. Fowler; Amir Hajian; M. Halpern; Matthew Hasselfield; C. Hernández-Monteagudo; G. C. Hilton; Matt Hilton; Adam D. Hincks; Renée Hlozek; K. M. Huffenberger; David H. Hughes

We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the ΛCDM cosmological model. At l>3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8σ level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.


Physical Review Letters | 2011

Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements.

Blake D. Sherwin; Joanna Dunkley; Sudeep Das; J. W. Appel; J. Richard Bond; C. Sofia Carvalho; Mark J. Devlin; Rolando Dünner; Thomas Essinger-Hileman; Joseph W. Fowler; Amir Hajian; M. Halpern; Matthew Hasselfield; Adam D. Hincks; Renée Hlozek; John P. Hughes; K. D. Irwin; Jeff Klein; Arthur Kosowsky; Tobias A. Marriage; Danica Marsden; Kavilan Moodley; F. Menanteau; Michael D. Niemack; Michael R. Nolta; Lyman A. Page; Lucas Parker; Erik D. Reese; Benjamin L. Schmitt; Neelima Sehgal

For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density Ω(Λ) confirms other measurements from supernovae, galaxy clusters, and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.


The Astrophysical Journal | 2012

Evidence for environmental changes in the submillimeter dust opacity

Peter G. Martin; A. Roy; Sylvain Bontemps; M.-A. Miville-Deschênes; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; Simon R. Dicker; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Gaelen Marsden; Philip Daniel Mauskopf; C. B. Netterfield; L. Olmi; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald V. Wiebe

The submillimeter opacity of dust in the diffuse interstellar medium (ISM) in the Galactic plane has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used multi-wavelength continuum data: three Balloon-borne Large Aperture Submillimeter Telescope bands at 250, 350, and 500 μm and one IRAS band at 100 μm. The proxy is the near-infrared color excess, E(J – K s), obtained from the Two Micron All Sky Survey. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity σe(1200) at 1200 GHz or 250 μm can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N H > 1022 cm–2) and small enough to ensure a uniform dust temperature. We find σe(1200) is typically (2-4) × 10–25 cm2 H–1 and thus about 2-4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (and re-radiated) by the dust, reflecting changes in the strength of the interstellar radiation field and/or the dust absorption opacity. These changes in emission opacity and power affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower temperature, the trend of increasing σe(1200) with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity raises a cautionary flag because all column densities deduced from dust emission maps, and the masses of compact structures within them, depend inversely on the value adopted.


The Astrophysical Journal | 2009

BLAST: A Far-Infrared Measurement of the History of Star Formation

Enzo Pascale; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; Simon Dye; Stephen Anthony Eales; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Gaelen Marsden; Philip Daniel Mauskopf; Lorenzo Moncelsi; Henry Ngo; C. B. Netterfield; Luca Olmi; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

We directly measure redshift evolution in the mean physical properties (far-infrared luminosity, temperature, and mass) of the galaxies that produce the cosmic infrared background (CIB), using measurements from the Balloon-borne Large Aperture Submillimeter Telescope (BLAST), and Spitzer which constrain the CIB emission peak. This sample is known to produce a surface brightness in the BLAST bands consistent with the full CIB, and photometric redshifts are identified for all of the objects. We find that most of the 70 μm background is generated at z lsim 1 and the 500 μm background generated at z gsim 1. A significant growth is observed in the mean luminosity from ~109-1012 L sun, and in the mean temperature by 10 K, from redshifts 0 < z < 3. However, there is only weak positive evolution in the comoving dust mass in these galaxies across the same redshift range. We also measure the evolution of the far-infrared luminosity density, and the star formation rate history for these objects, finding good agreement with other infrared studies up to z ~ 1, exceeding the contribution attributed to optically selected galaxies.


The Astrophysical Journal | 2011

The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

Tobias A. Marriage; Jean Baptiste Juin; Yen-Ting Lin; Danica Marsden; Michael R. Nolta; Bruce Partridge; Peter A. R. Ade; Paula Aguirre; M. Amiri; J. W. Appel; L. Felipe Barrientos; E. S. Battistelli; John R. Bond; Ben Brown; B. Burger; J. A. Chervenak; Sudeep Das; Mark J. Devlin; Simon R. Dicker; W. Bertrand Doriese; Joanna Dunkley; Rolando Dünner; Thomas Essinger-Hileman; R. P. Fisher; Joseph W. Fowler; Amir Hajian; M. Halpern; Matthew Hasselfield; C. Hernández-Monteagudo; G. C. Hilton

We report on extragalactic sources detected in a 455 deg2 map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope (ACT) 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low-redshift X-ray-selected galaxy clusters. Estimates of the radio to millimeter-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of α5-20 = –0.07 ± 0.06, α20-148 = –0.39 ± 0.04, and α5-148 = –0.20 ± 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C Sync = (2.8 ± 0.3) × 10–6μK2.


The Astrophysical Journal | 2009

Radio and mid-infrared identification of BLAST source counterparts in the Chandra Deep Field South

Simon Dye; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; James Dunlop; Stephen Anthony Eales; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; B. Magnelli; Gaelen Marsden; Philip Daniel Mauskopf; Lorenzo Moncelsi; C. B. Netterfield; Luca Olmi; Enzo Pascale; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Tom Targett; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero

We have identified radio and/or mid-infrared counterparts to 198 out of 350 sources detected at ≥5σ over ~9 deg2 centered on the Chandra Deep Field South by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) at 250, 350, and 500 μm. We have matched 114 of these counterparts to optical sources with previously derived photometric redshifts and fitted spectral energy distributions to the BLAST fluxes and fluxes at 70 and 160 μm acquired with the Spitzer Space Telescope. In this way, we have constrained dust temperatures, total far-infrared/submillimeter luminosities, and star formation rates for each source. Our findings show that, on average, the BLAST sources lie at significantly lower redshifts and have significantly lower rest-frame dust temperatures compared to submillimeter sources detected in surveys conducted at 850 μm. We demonstrate that an apparent increase in dust temperature with redshift in our sample arises as a result of selection effects. Finally, we provide the full multiwavelength catalog of ≥5σ BLAST sources contained within the complete ~9 deg2 survey area.


Journal of Cosmology and Astroparticle Physics | 2017

The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

Thibaut Louis; Emily Grace; Matthew Hasselfield; Marius Lungu; Loïc Maurin; Graeme E. Addison; Peter A. R. Ade; Simone Aiola; Rupert Allison; M. Amiri; Elio Angile; Nicholas Battaglia; James A. Beall; Francesco De Bernardis; J. Richard Bond; Joe Britton; Erminia Calabrese; H. M. Cho; Steve K. Choi; Kevin Coughlin; Devin Crichton; Kevin T. Crowley; Rahul Datta; Mark J. Devlin; Simon R. Dicker; Joanna Dunkley; Rolando Dünner; Simone Ferraro; Anna E. Fox; Patricio A. Gallardo

Author(s): Louis, T; Grace, E; Hasselfield, M; Lungu, M; Maurin, L; Addison, GE; Ade, PAR; Aiola, S; Allison, R; Amiri, M; Angile, E; Battaglia, N; Beall, JA; De Bernardis, F; Bond, JR; Britton, J; Calabrese, E; Cho, HM; Choi, SK; Coughlin, K; Crichton, D; Crowley, K; Datta, R; Devlin, MJ; Dicker, SR; Dunkley, J; Dunner, R; Ferraro, S; Fox, AE; Gallardo, P; Gralla, M; Halpern, M; Henderson, S; Hill, JC; Hilton, GC; Hilton, M; Hincks, AD; Hlozek, R; Patty Ho, SP; Huang, Z; Hubmayr, J; Huffenberger, KM; Hughes, JP; Infante, L; Irwin, K; Kasanda, SM; Klein, J; Koopman, B; Kosowsky, A; Li, D; Madhavacheril, M; Marriage, TA; McMahon, J; Menanteau, F; Moodley, K; Munson, C; Naess, S; Nati, F; Newburgh, L; Nibarger, J; Niemack, MD; Nolta, MR; Nunez, C; Page, LA; Pappas, C; Partridge, B; Rojas, F; Schaan, E; Schmitt, BL; Sehgal, N; Sherwin, BD; Sievers, J; Simon, S; Spergel, DN; Staggs, ST; Switzer, ER; Thornton, R; Trac, H; Treu, J; Tucker, C; Engelen, AV; Ward, JT; Wollack, EJ | Abstract:

Collaboration


Dive into the Jeff Klein's collaboration.

Top Co-Authors

Avatar

Mark J. Devlin

University of California

View shared research outputs
Top Co-Authors

Avatar

M. Halpern

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Simon R. Dicker

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marie Rex

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Hughes

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaelen Marsden

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge