Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joshua O. Gundersen is active.

Publication


Featured researches published by Joshua O. Gundersen.


Nature | 2009

Over half of the far-infrared background light comes from galaxies at z ≥ 1.2

Mark J. Devlin; Peter A. R. Ade; Itziar Aretxaga; James J. Bock; Edward L. Chapin; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Gaelen Marsden; Peter G. Martin; Philip Daniel Mauskopf; Lorenzo Moncelsi; C. B. Netterfield; Henry Ngo; Luca Olmi; Enzo Pascale; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 ≤ z ≤ 4, these massive submillimetre galaxies go through a phase characterized by optically obscured star formation at rates several hundred times that in the local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 μm in the rest frame. At 1 ≤ z ≤ 4, the peak is redshifted to wavelengths between 200 and 500 μm. The cumulative effect of these galaxies is to yield extragalactic optical and far-infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 μm. Combining our results at 500 μm with those at 24 μm, we determine that all of the FIRB comes from individual galaxies, with galaxies at z ≥ 1.2 accounting for 70% of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.


The Astrophysical Journal | 2009

BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND

Gaelen Marsden; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; Simon R. Dicker; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Philip Daniel Mauskopf; B. Magnelli; Lorenzo Moncelsi; C. B. Netterfield; Henry Ngo; Luca Olmi; Enzo Pascale; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has made 1 deg2, deep, confusion-limited maps at three different bands, centered on the Great Observatories Origins Deep Survey South Field. By calculating the covariance of these maps with catalogs of 24 μm sources from the Far-Infrared Deep Extragalactic Legacy Survey, we have determined that the total submillimeter intensities are 8.60 ± 0.59, 4.93 ± 0.34, and 2.27 ± 0.20 nW m–2 sr–1 at 250, 350, and 500 μm, respectively. These numbers are more precise than previous estimates of the cosmic infrared background (CIB) and are consistent with 24 μm-selected galaxies generating the full intensity of the CIB. We find that the fraction of the CIB that originates from sources at z ≥ 1.2 increases with wavelength, with 60% from high-redshift sources at 500 μm. At all BLAST wavelengths, the relative intensity of high-z sources is higher for 24 μm-faint sources than that for 24 μm-bright sources. Galaxies identified as active galactic nuclei (AGNs) by their Infrared Array Camera colors are 1.6-2.6 times brighter than the average population at 250-500 μm, consistent with what is found for X-ray-selected AGNs. BzK-selected galaxies are found to be moderately brighter than typical 24 μm-selected galaxies in the BLAST bands. These data provide high-precision constraints for models of the evolution of the number density and intensity of star-forming galaxies at high redshift.


The Astrophysical Journal | 2012

Evidence for environmental changes in the submillimeter dust opacity

Peter G. Martin; A. Roy; Sylvain Bontemps; M.-A. Miville-Deschênes; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; Simon R. Dicker; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Gaelen Marsden; Philip Daniel Mauskopf; C. B. Netterfield; L. Olmi; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald V. Wiebe

The submillimeter opacity of dust in the diffuse interstellar medium (ISM) in the Galactic plane has been quantified using a pixel-by-pixel correlation of images of continuum emission with a proxy for column density. We used multi-wavelength continuum data: three Balloon-borne Large Aperture Submillimeter Telescope bands at 250, 350, and 500 μm and one IRAS band at 100 μm. The proxy is the near-infrared color excess, E(J – K s), obtained from the Two Micron All Sky Survey. Based on observations of stars, we show how well this color excess is correlated with the total hydrogen column density for regions of moderate extinction. The ratio of emission to column density, the emissivity, is then known from the correlations, as a function of frequency. The spectral distribution of this emissivity can be fit by a modified blackbody, whence the characteristic dust temperature T and the desired opacity σe(1200) at 1200 GHz or 250 μm can be obtained. We have analyzed 14 regions near the Galactic plane toward the Vela molecular cloud, mostly selected to avoid regions of high column density (N H > 1022 cm–2) and small enough to ensure a uniform dust temperature. We find σe(1200) is typically (2-4) × 10–25 cm2 H–1 and thus about 2-4 times larger than the average value in the local high Galactic latitude diffuse atomic ISM. This is strong evidence for grain evolution. There is a range in total power per H nucleon absorbed (and re-radiated) by the dust, reflecting changes in the strength of the interstellar radiation field and/or the dust absorption opacity. These changes in emission opacity and power affect the equilibrium T, which is typically 15 K, colder than at high latitudes. Our analysis extends, to higher opacity and lower temperature, the trend of increasing σe(1200) with decreasing T that was found at high latitudes. The recognition of changes in the emission opacity raises a cautionary flag because all column densities deduced from dust emission maps, and the masses of compact structures within them, depend inversely on the value adopted.


The Astrophysical Journal | 2009

BLAST: A Far-Infrared Measurement of the History of Star Formation

Enzo Pascale; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; Simon Dye; Stephen Anthony Eales; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; Gaelen Marsden; Philip Daniel Mauskopf; Lorenzo Moncelsi; Henry Ngo; C. B. Netterfield; Luca Olmi; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero; Donald Wiebe

We directly measure redshift evolution in the mean physical properties (far-infrared luminosity, temperature, and mass) of the galaxies that produce the cosmic infrared background (CIB), using measurements from the Balloon-borne Large Aperture Submillimeter Telescope (BLAST), and Spitzer which constrain the CIB emission peak. This sample is known to produce a surface brightness in the BLAST bands consistent with the full CIB, and photometric redshifts are identified for all of the objects. We find that most of the 70 μm background is generated at z lsim 1 and the 500 μm background generated at z gsim 1. A significant growth is observed in the mean luminosity from ~109-1012 L sun, and in the mean temperature by 10 K, from redshifts 0 < z < 3. However, there is only weak positive evolution in the comoving dust mass in these galaxies across the same redshift range. We also measure the evolution of the far-infrared luminosity density, and the star formation rate history for these objects, finding good agreement with other infrared studies up to z ~ 1, exceeding the contribution attributed to optically selected galaxies.


The Astrophysical Journal | 1995

Degree-scale anisotropy in the cosmic microwave background: SP94 results

Joshua O. Gundersen; Mark A. Lim; John William Staren; Carlos Alexandre Wuensche; Newton Figueiredo; T. Gaier; Timothy Koch; P. R. Meinhold; M. Seiffert; G. Cook

We present results from two observations of the cosmic microwave background (CMB) performed from the South Pole during the 1993-1994 austral summer. Each observation employed a 3 deg peak-to-peak sinusoidal, single-difference chop and consisted of a 20 deg x 1 deg strip on the sky. The first observation used a receiver which operates in three channels between 38 and 45 GHz (Q-band) with a full width half maximum (FWHM) beam which varies from 1 deg to 1.15 deg. The second observation overlapped the first observation and used a receiver which operates in four channels between 26 and 36 GHz (Ka-band) with a FWHM beam which varies from 1.5 deg to 1.7 deg. Significant correlated structure is observed in all channels for each observation. The spectrum of the structure is consistent with a CMB spectrum and is formally inconsistent with diffuse synchrotron and free-free emission at the 5 sigma level. The amplitude of the structure is inconsistent with 20 K interstellar dust; however, the data do not discriminate against flat or inverted spectrum point sources. The root mean square amplitude (+/- 1 sigma) of the combined (Ka + Q) data is Delta T(sub rms) = 41.2(sup +15.5, sub -6.7) micro-K for an average window function which has a peak value of 0.97 at l = 68 and drops to e(exp -0.5) of the peak value at l = 36 and l = 106. A band power estimate of the CMB power spectrum, C(sub l), gives average value of (C(sub l)l(l + 1)/(2 pi))(sub B) = 1.77(sup +1.58, sub -0.54) x 10(exp -10).


Monthly Notices of the Royal Astronomical Society | 2002

Breaking the 'redshift deadlock' - I. Constraining the star formation history of galaxies with submillimetre photometric redshifts

David H. Hughes; Itziar Aretxaga; Edward L. Chapin; E. Gaztanaga; James Dunlop; Mark J. Devlin; M. Halpern; Joshua O. Gundersen; J. Klein; C. B. Netterfield; L. Olmi; D. Scott; G. S. Tucker

Future extragalactic submillimetre and millimetre surveys have the potential to provide a sensitive census of the level of obscured star formation in galaxies at all redshifts. While in general there is good agreement between the source counts from existing Submillimetre Common User Bolometer Array (SCUBA; 850-µm) and Max Planck Millimetre Bolometer Array (MAMBO; 1.25-mm) surveys of different depths and areas, it remains difficult to determine the redshift distribution and bolometric luminosities of the submillimetre and millimetre galaxy population. This is principally due to the ambiguity in identifying an individual submillimetre source with its optical, IR or radio counterpart which, in turn, prevents a confident measurement of the spectroscopic redshift. Additionally, the lack of data measuring the rest-frame FIR spectral peak of the submillimetre galaxies gives rise to poor constraints on their rest-frame FIR luminosities and star formation rates. In this paper we describe Monte Carlo simulations of ground-based, balloon-borne and satellite submillimetre surveys that demonstrate how the restframe FIR‐submillimetre spectral energy distributions (250‐850 µm) can be used to derive photometric redshifts with an rms accuracy of ±0.4 over the range 0 3 × 10 12 L� ) with an accuracy of ∼20 per cent.


The Astrophysical Journal | 2009

Radio and mid-infrared identification of BLAST source counterparts in the Chandra Deep Field South

Simon Dye; Peter A. R. Ade; James J. Bock; Edward L. Chapin; Mark J. Devlin; James Dunlop; Stephen Anthony Eales; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; B. Magnelli; Gaelen Marsden; Philip Daniel Mauskopf; Lorenzo Moncelsi; C. B. Netterfield; Luca Olmi; Enzo Pascale; G. Patanchon; Marie Rex; Douglas Scott; Christopher Semisch; Tom Targett; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker; Gregory S. Tucker; M. Viero

We have identified radio and/or mid-infrared counterparts to 198 out of 350 sources detected at ≥5σ over ~9 deg2 centered on the Chandra Deep Field South by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) at 250, 350, and 500 μm. We have matched 114 of these counterparts to optical sources with previously derived photometric redshifts and fitted spectral energy distributions to the BLAST fluxes and fluxes at 70 and 160 μm acquired with the Spitzer Space Telescope. In this way, we have constrained dust temperatures, total far-infrared/submillimeter luminosities, and star formation rates for each source. Our findings show that, on average, the BLAST sources lie at significantly lower redshifts and have significantly lower rest-frame dust temperatures compared to submillimeter sources detected in surveys conducted at 850 μm. We demonstrate that an apparent increase in dust temperature with redshift in our sample arises as a result of selection effects. Finally, we provide the full multiwavelength catalog of ≥5σ BLAST sources contained within the complete ~9 deg2 survey area.


The Astrophysical Journal | 2009

The Blast Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D

Luca Olmi; Peter A. R. Ade; Daniel Anglés-Alcázar; James J. Bock; Edward L. Chapin; Massimo De Luca; Mark J. Devlin; Simon R. Dicker; D. Elia; Giovanni G. Fazio; T. Giannini; Matthew Joseph Griffin; Joshua O. Gundersen; M. Halpern; Peter Charles Hargrave; David H. Hughes; Jeff Klein; D. Lorenzetti; Massimo Marengo; Gaelen Marsden; Peter G. Martin; Fabrizio Massi; Philip Daniel Mauskopf; C. B. Netterfield; G. Patanchon; Marie Rex; Alberto Salama; Douglas Scott; Christopher Semisch; H. A. Smith

The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350, and 500 μm survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associated with the earliest stages of star formation. Here, we present the results from observations of the Vela-D region, covering about 4 deg^2, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC, and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index β = 2.0. This combination of data allows us to determine the temperature, luminosity, and mass of each BLAST core, and also enables us to separate starless from protostellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and protostellar cores, and we find that there appear to be a smooth transition from the pre- to the protostellar phase. In particular, for protostellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.


The Astrophysical Journal | 1992

A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

Marc L. Fischer; David C. Alsop; Edward S. Cheng; A. C. Clapp; David A. Cottingham; Joshua O. Gundersen; Timothy Koch; E. Kreysa; P. R. Meinhold; A. E. Lange; P. M. Lubin; P. L. Richards; George F. Smoot

We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.


The Astrophysical Journal | 2014

Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

Tristan G. Matthews; Peter A. R. Ade; Francesco E. Angilè; Steven J. Benton; Edward L. Chapin; Nicholas L. Chapman; Mark J. Devlin; L. M. Fissel; Yasuo Fukui; N. N. Gandilo; Joshua O. Gundersen; Peter Charles Hargrave; J. Klein; Andrei Korotkov; Lorenzo Moncelsi; Tony Mroczkowski; C. B. Netterfield; Giles Novak; D. Nutter; L. Olmi; Enzo Pascale; Frédérick Poidevin; G. Savini; Douglas Scott; J. A. Shariff; J. D. Soler; Kengo Tachihara; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker

The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLASTs 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

Collaboration


Dive into the Joshua O. Gundersen's collaboration.

Top Co-Authors

Avatar

Mark J. Devlin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. R. Meinhold

University of California

View shared research outputs
Top Co-Authors

Avatar

Jeff Klein

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Marie Rex

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge