Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffery S. Pettis is active.

Publication


Featured researches published by Jeffery S. Pettis.


PLOS ONE | 2009

Colony Collapse Disorder: A Descriptive Study

Dennis vanEngelsdorp; Jay D. Evans; Claude Saegerman; Christopher A. Mullin; Eric Haubruge; Bach Kim Nguyen; Maryann Frazier; James L. Frazier; Diana Cox-Foster; Yanping Chen; Robyn M. Underwood; David R. Tarpy; Jeffery S. Pettis

Background Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L.) colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD) because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. Methods and Principal Findings Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels), no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor) were higher in control colonies than CCD-affected colonies. Conclusions/Significance This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted.


PLOS ONE | 2010

High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health.

Christopher A. Mullin; Maryann Frazier; James L. Frazier; Sara A. Ashcraft; Roger Simonds; Dennis vanEngelsdorp; Jeffery S. Pettis

Background Recent declines in honey bees for crop pollination threaten fruit, nut, vegetable and seed production in the United States. A broad survey of pesticide residues was conducted on samples from migratory and other beekeepers across 23 states, one Canadian province and several agricultural cropping systems during the 2007–08 growing seasons. Methodology/Principal Findings We have used LC/MS-MS and GC/MS to analyze bees and hive matrices for pesticide residues utilizing a modified QuEChERS method. We have found 121 different pesticides and metabolites within 887 wax, pollen, bee and associated hive samples. Almost 60% of the 259 wax and 350 pollen samples contained at least one systemic pesticide, and over 47% had both in-hive acaricides fluvalinate and coumaphos, and chlorothalonil, a widely-used fungicide. In bee pollen were found chlorothalonil at levels up to 99 ppm and the insecticides aldicarb, carbaryl, chlorpyrifos and imidacloprid, fungicides boscalid, captan and myclobutanil, and herbicide pendimethalin at 1 ppm levels. Almost all comb and foundation wax samples (98%) were contaminated with up to 204 and 94 ppm, respectively, of fluvalinate and coumaphos, and lower amounts of amitraz degradates and chlorothalonil, with an average of 6 pesticide detections per sample and a high of 39. There were fewer pesticides found in adults and brood except for those linked with bee kills by permethrin (20 ppm) and fipronil (3.1 ppm). Conclusions/Significance The 98 pesticides and metabolites detected in mixtures up to 214 ppm in bee pollen alone represents a remarkably high level for toxicants in the brood and adult food of this primary pollinator. This represents over half of the maximum individual pesticide incidences ever reported for apiaries. While exposure to many of these neurotoxicants elicits acute and sublethal reductions in honey bee fitness, the effects of these materials in combinations and their direct association with CCD or declining bee health remains to be determined.


PLOS ONE | 2008

A Survey of Honey Bee Colony Losses in the U.S., Fall 2007 to Spring 2008

Dennis vanEngelsdorp; Jerry Hayes; Robyn M. Underwood; Jeffery S. Pettis

Background Honey bees are an essential component of modern agriculture. A recently recognized ailment, Colony Collapse Disorder (CCD), devastates colonies, leaving hives with a complete lack of bees, dead or alive. Up to now, estimates of honey bee population decline have not included losses occurring during the wintering period, thus underestimating actual colony mortality. Our survey quantifies the extent of colony losses in the United States over the winter of 2007–2008. Methodology/Principal Findings Surveys were conducted to quantify and identify management factors (e.g. operation size, hive migration) that contribute to high colony losses in general and CCD symptoms in particular. Over 19% of the countrys estimated 2.44 million colonies were surveyed. A total loss of 35.8% of colonies was recorded; an increase of 11.4% compared to last year. Operations that pollinated almonds lost, on average, the same number of colonies as those that did not. The 37.9% of operations that reported having at least some of their colonies die with a complete lack of bees had a total loss of 40.8% of colonies compared to the 17.1% loss reported by beekeepers without this symptom. Large operations were more likely to have this symptom suggesting that a contagious condition may be a causal factor. Sixty percent of all colonies that were reported dead in this survey died without dead bees, and thus possibly suffered from CCD. In PA, losses varied with region, indicating that ambient temperature over winter may be an important factor. Conclusions/Significance Of utmost importance to understanding the recent losses and CCD is keeping track of losses over time and on a large geographic scale. Given that our surveys are representative of the losses across all beekeeping operations, between 0.75 and 1.00 million honey bee colonies are estimated to have died in the United States over the winter of 2007–2008. This article is an extensive survey of U.S. beekeepers across the continent, serving as a reference for comparison with future losses as well as providing guidance to future hypothesis-driven research on the causes of colony mortality.


Naturwissenschaften | 2012

Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema.

Jeffery S. Pettis; Dennis vanEngelsdorp; Josephine Johnson; Galen P. Dively

Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.


PLOS ONE | 2012

Pathogen Webs in Collapsing Honey Bee Colonies

R. Scott Cornman; David R. Tarpy; Yanping Chen; Lacey Jeffreys; Dawn Lopez; Jeffery S. Pettis; Dennis vanEngelsdorp; Jay D. Evans

Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.


PLOS ONE | 2013

Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae

Jeffery S. Pettis; Elinor M. Lichtenberg; Michael Andree; Jennie Stitzinger; Robyn Rose; Dennis vanEngelsdorp

Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1) what types of pesticides bees are exposed to when rented for pollination of various crops and 2) how field-relevant pesticide blends affect bees’ susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers’ roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to.


PLOS Pathogens | 2009

Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees

R. Scott Cornman; Yanping Chen; Michael C. Schatz; Craig Street; Yan Zhao; Brian Desany; Michael Egholm; Stephen K. Hutchison; Jeffery S. Pettis; W. Ian Lipkin; Jay D. Evans

Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T) and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposable-element proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee–Nosema interactions.


Journal of Apicultural Research | 2010

A survey of honey bee colony losses in the United States, fall 2008 to spring 2009

Jerry Hayes; Robyn M. Underwood; Jeffery S. Pettis

Summary This study records the third consecutive year of high winter losses in managed honey bee colonies in the USA. Over the winter of 2008–9 an estimated 29% of all US colonies died. Operations which pollinated Californian almond orchards over the survey period had lower average losses than those which did not. Beekeepers consider normal losses to be 17.6%, and 57.9% of all responding beekeepers suffered losses greater than that which they considered to be acceptable. The proportion of operations with the Colony Collapse Disorder (CCD) symptom of “no dead bees in the colony or apiary” decreased in this period as compared to the previous years. The proportion of colonies dying from apparently manageable conditions, however, such as starvation or a weak condition in the fall increased as compared to previous surveys.


PLOS Pathogens | 2010

Large-Scale Field Application of RNAi Technology Reducing Israeli Acute Paralysis Virus Disease in Honey Bees ( Apis mellifera , Hymenoptera: Apidae)

Wayne B. Hunter; James D. Ellis; Dennis vanEngelsdorp; Jerry Hayes; Dave Westervelt; Eitan Glick; Michael Williams; Ilan Sela; Eyal Maori; Jeffery S. Pettis; Diana Cox-Foster; Nitzan Paldi

The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsible for up to 30% of the worlds food production through pollination of crops. Since fall 2006, honey bees in the U.S. have faced a serious population decline, due in part to a phenomenon called Colony Collapse Disorder (CCD), which is a disease syndrome that is likely caused by several factors. Data from an initial study in which investigators compared pathogens in honey bees affected by CCD suggested a putative role for Israeli Acute Paralysis Virus, IAPV. This is a single stranded RNA virus with no DNA stage placed taxonomically within the family Dicistroviridae. Although subsequent studies have failed to find IAPV in all CCD diagnosed colonies, IAPV has been shown to cause honey bee mortality. RNA interference technology (RNAi) has been used successfully to silence endogenous insect (including honey bee) genes both by injection and feeding. Moreover, RNAi was shown to prevent bees from succumbing to infection from IAPV under laboratory conditions. In the current study IAPV specific homologous dsRNA was used in the field, under natural beekeeping conditions in order to prevent mortality and improve the overall health of bees infected with IAPV. This controlled study included a total of 160 honey bee hives in two discrete climates, seasons and geographical locations (Florida and Pennsylvania). To our knowledge, this is the first successful large-scale real world use of RNAi for disease control.


Journal of Insect Physiology | 2012

Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera

Humberto Boncristiani; Robyn M. Underwood; Ryan S. Schwarz; Jay D. Evans; Jeffery S. Pettis; Dennis vanEngelsdorp

The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies.

Collaboration


Dive into the Jeffery S. Pettis's collaboration.

Top Co-Authors

Avatar

Jay D. Evans

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Yanping Chen

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Tarpy

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Robyn M. Underwood

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerry Hayes

Florida Department of Agriculture and Consumer Services

View shared research outputs
Top Co-Authors

Avatar

Mark F. Feldlaufer

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robyn Rose

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge