Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey Eastham-Anderson is active.

Publication


Featured researches published by Jeffrey Eastham-Anderson.


Nature | 2007

Interleukin-22, a T H 17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis

Yan Zheng; Dimitry M. Danilenko; Patricia Valdez; Ian Kasman; Jeffrey Eastham-Anderson; Jianfeng Wu; Wenjun Ouyang

Psoriasis is a chronic inflammatory skin disease characterized by hyperplasia of the epidermis (acanthosis), infiltration of leukocytes into both the dermis and epidermis, and dilation and growth of blood vessels. The underlying cause of the epidermal acanthosis in psoriasis is still largely unknown. Recently, interleukin (IL)-23, a cytokine involved in the development of IL-17-producing T helper cells (TH17 cells), was found to have a potential function in the pathogenesis of psoriasis. Here we show that IL-22 is preferentially produced by TH17 cells and mediates the acanthosis induced by IL-23. We found that IL-23 or IL-6 can directly induce the production of IL-22 from both murine and human naive T cells. However, the production of IL-22 and IL-17 from TH17 cells is differentially regulated. Transforming growth factor-β, although crucial for IL-17 production, actually inhibits IL-22 production. Furthermore, IL-22 mediates IL-23-induced acanthosis and dermal inflammation through the activation of Stat3 (signal transduction and activators of transcription 3) in vivo. Our results suggest that TH17 cells, through the production of both IL-22 and IL-17, might have essential functions in host defence and in the pathogenesis of autoimmune diseases such as psoriasis. IL-22, as an effector cytokine produced by T cells, mediates the crosstalk between the immune system and epithelial cells.


Nature | 2010

Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival

Martin Schwickart; XiaoDong Huang; Jennie R. Lill; Jinfeng Liu; Ronald E. Ferrando; Dorothy French; Heather Maecker; Karen O’Rourke; Fernando Bazan; Jeffrey Eastham-Anderson; Peng Yue; David Dornan; David C. S. Huang; Vishva M. Dixit

MCL1 is essential for the survival of stem and progenitor cells of multiple lineages, and is unique among pro-survival BCL2 family members in that it is rapidly turned over through the action of ubiquitin ligases. B- and mantle-cell lymphomas, chronic myeloid leukaemia, and multiple myeloma, however, express abnormally high levels of MCL1, contributing to chemoresistance and disease relapse. The mechanism of MCL1 overexpression in cancer is not well understood. Here we show that the deubiquitinase USP9X stabilizes MCL1 and thereby promotes cell survival. USP9X binds MCL1 and removes the Lys 48-linked polyubiquitin chains that normally mark MCL1 for proteasomal degradation. Increased USP9X expression correlates with increased MCL1 protein in human follicular lymphomas and diffuse large B-cell lymphomas. Moreover, patients with multiple myeloma overexpressing USP9X have a poor prognosis. Knockdown of USP9X increases MCL1 polyubiquitination, which enhances MCL1 turnover and cell killing by the BH3 mimetic ABT-737. These results identify USP9X as a prognostic and therapeutic target, and they show that deubiquitinases may stabilize labile oncoproteins in human malignancies.


The Lancet | 2014

Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial

Severine Vermeire; Sharon O'Byrne; Mary E. Keir; Marna Williams; Timothy Lu; John C. Mansfield; Christopher A. Lamb; Brian G. Feagan; Julián Panés; Azucena Salas; Daniel C. Baumgart; Stefan Schreiber; Iris Dotan; William J. Sandborn; Gaik Wei Tew; Diana Luca; Meina T Tang; Lauri Diehl; Jeffrey Eastham-Anderson; Gert De Hertogh; Clémentine Perrier; Jackson G. Egen; John A. Kirby; Gert Van Assche; Paul Rutgeerts

BACKGROUND Etrolizumab is a humanised monoclonal antibody that selectively binds the β7 subunit of the heterodimeric integrins α4β7 and αEβ7. We aimed to assess etrolizumab in patients with moderately-to-severely active ulcerative colitis. METHODS In this double-blind, placebo-controlled, randomised, phase 2 study, patients with moderately-to-severely active ulcerative colitis who had not responded to conventional therapy were recruited from 40 referral centres in 11 countries. Eligible patients (aged 18-75 years; Mayo Clinic Score [MCS] of 5 of higher [or ≥6 in USA]; and disease extending 25 cm or more from anal verge) were randomised (1:1:1) to one of two dose levels of subcutaneous etrolizumab (100 mg at weeks 0, 4, and 8, with placebo at week 2; or 420 mg loading dose [LD] at week 0 followed by 300 mg at weeks 2, 4, and 8), or matching placebo. The primary endpoint was clinical remission at week 10, defined as MCS of 2 or less (with no individual subscore of >1), analysed in the modified intention-to-treat population (mITT; all randomly assigned patients who had received at least one dose of study drug, had at least one post-baseline disease-activity assessment, and had a centrally read screening endoscopic subscore of ≥2). This study is registered with ClinicalTrials.gov, number NCT01336465. FINDINGS Between Sept 2, 2011, and July 11, 2012, 124 patients were randomly assigned, of whom five had a endoscopic subscore of 0 or 1 and were excluded from the mITT population, leaving 39 patients in the etrolizumab 100 mg group, 39 in the etrolizumab 300 mg plus LD group, and 41 in the placebo group for the primary analyses. No patients in the placebo group had clinical remission at week 10, compared with eight (21% [95% CI 7-36]) patients in the etrolizumab 100 mg group (p=0·0040) and four (10% [0·2-24]) patients in the 300 mg plus LD group (p=0·048). Adverse events occurred in 25 (61%) of 41 patients in the etrolizumab 100 mg group (five [12%] of which were regarded as serious), 19 (48%) of 40 patients in the etrolizumab 300 mg plus LD group (two [5%] serious), and 31 (72%) of 43 patients in the placebo group (five [12%] serious). INTERPRETATION Etrolizumab was more likely to lead to clinical remission at week 10 than was placebo. Therefore, blockade of both α4β7 and αEβ7 might provide a unique therapeutic approach for the treatment of ulcerative colitis, and phase 3 studies have been planned. FUNDING Genentech.


Annals of Neurology | 2010

B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity

Martin S. Weber; Thomas Prod'homme; Juan C. Patarroyo; Nicolas Molnarfi; Tara Karnezis; Klaus Lehmann-Horn; Dimitry M. Danilenko; Jeffrey Eastham-Anderson; Anthony J. Slavin; Christopher Linington; Claude C.A. Bernard; Flavius Martin; Scott S. Zamvil

Clinical studies indicate that anti‐CD20 B‐cell depletion may be an effective multiple sclerosis (MS) therapy. We investigated mechanisms of anti‐CD20‐mediated immune modulation using 2 paradigms of experimental autoimmune encephalomyelitis (EAE).


Cell | 2010

PlGF Blockade Does Not Inhibit Angiogenesis during Primary Tumor Growth

Carlos Bais; Xiumin Wu; Jenny Yao; Suya Yang; Yongping Crawford; Krista McCutcheon; Christine Tan; Ganesh Kolumam; Jean-Michel Vernes; Jeffrey Eastham-Anderson; Peter Haughney; Marcin Kowanetz; Thijs J. Hagenbeek; Ian Kasman; Hani Bou Reslan; Jed Ross; Nick van Bruggen; Richard A. D. Carano; Yu-Ju Gloria Meng; Jo-Anne Hongo; Jean Philippe Stephan; Masabumi Shibuya; Napoleone Ferrara

It has been recently reported that treatment with an anti-placenta growth factor (PlGF) antibody inhibits metastasis and primary tumor growth. Here we show that, although anti-PlGF treatment inhibited wound healing, extravasation of B16F10 cells, and growth of a tumor engineered to overexpress the PlGF receptor (VEGFR-1), neutralization of PlGF using four novel blocking antibodies had no significant effect on tumor angiogenesis in 15 models. Also, genetic ablation of the tyrosine kinase domain of VEGFR-1 in the host did not result in growth inhibition of the anti-VEGF-A sensitive or resistant tumors tested. Furthermore, combination of anti-PlGF with anti-VEGF-A antibodies did not result in greater antitumor efficacy than anti-VEGF-A monotherapy. In conclusion, our data argue against an important role of PlGF during primary tumor growth in most models and suggest that clinical evaluation of anti-PlGF antibodies may be challenging.


Proceedings of the National Academy of Sciences of the United States of America | 2013

DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury

Trent Watkins; Bei Wang; Sarah Huntwork-Rodriguez; Jing Yang; Zhiyu Jiang; Jeffrey Eastham-Anderson; Zora Modrusan; Joshua S. Kaminker; Marc Tessier-Lavigne; Joseph W. Lewcock

The cell intrinsic factors that determine whether a neuron regenerates or undergoes apoptosis in response to axonal injury are not well defined. Here we show that the mixed-lineage dual leucine zipper kinase (DLK) is an essential upstream mediator of both of these divergent outcomes in the same cell type. Optic nerve crush injury leads to rapid elevation of DLK protein, first in the axons of retinal ganglion cells (RGCs) and then in their cell bodies. DLK is required for the majority of gene expression changes in RGCs initiated by injury, including induction of both proapoptotic and regeneration-associated genes. Deletion of DLK in retina results in robust and sustained protection of RGCs from degeneration after optic nerve injury. Despite this improved survival, the number of axons that regrow beyond the injury site is substantially reduced, even when the tumor suppressor phosphatase and tensin homolog (PTEN) is deleted to enhance intrinsic growth potential. These findings demonstrate that these seemingly contradictory responses to injury are mechanistically coupled through a DLK-based damage detection mechanism.


PLOS ONE | 2011

FGF19 Regulates Cell Proliferation, Glucose and Bile Acid Metabolism via FGFR4-Dependent and Independent Pathways

Ai-Luen Wu; Sally Coulter; Christopher Liddle; Anne Wong; Jeffrey Eastham-Anderson; Dorothy French; Andrew S. Peterson; Junichiro Sonoda

Fibroblast growth factor 19 (FGF19) is a hormone-like protein that regulates carbohydrate, lipid and bile acid metabolism. At supra-physiological doses, FGF19 also increases hepatocyte proliferation and induces hepatocellular carcinogenesis in mice. Much of FGF19 activity is attributed to the activation of the liver enriched FGF Receptor 4 (FGFR4), although FGF19 can activate other FGFRs in vitro in the presence of the coreceptor βKlotho (KLB). In this report, we investigate the role of FGFR4 in mediating FGF19 activity by using Fgfr4 deficient mice as well as a variant of FGF19 protein (FGF19v) which is specifically impaired in activating FGFR4. Our results demonstrate that FGFR4 activation mediates the induction of hepatocyte proliferation and the suppression of bile acid biosynthesis by FGF19, but is not essential for FGF19 to improve glucose and lipid metabolism in high fat diet fed mice as well as in leptin-deficient ob/ob mice. Thus, FGF19 acts through multiple receptor pathways to elicit pleiotropic effects in regulating nutrient metabolism and cell proliferation.


PLOS ONE | 2009

Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors.

Bijay S. Jaiswal; Vasantharajan Janakiraman; Noelyn M. Kljavin; Jeffrey Eastham-Anderson; James E. Cupp; Yuxin Liang; David P. Davis; Klaus P. Hoeflich; Somasekar Seshagiri

Background Oncogenic RAS is a highly validated cancer target. Attempts at targeting RAS directly have so far not succeeded in the clinic. Understanding downstream RAS-effectors that mediate oncogenesis in a RAS mutant setting will help tailor treatments that use RAS-effector inhibitors either alone or in combination to target RAS-driven tumors. Methodology/Principal Findings In this study, we have investigated the sufficiency of targeting RAS-effectors, RAF, MEK and PI3-Kinase either alone or in combination in RAS mutant lines, using an inducible shRNA in vivo mouse model system. We find that in colon cancer cells harboring a KRASG13D mutant allele, knocking down KRAS alone or the RAFs in combination or the RAF effectors, MEK1 and MEK2, together is effective in delaying tumor growth in vivo. In melanoma cells harboring an NRASQ61L or NRASQ61K mutant allele, we find that targeting NRAS alone or both BRAF and CRAF in combination or both BRAF and PIK3CA together showed efficacy. Conclusion/Significance Our data indicates that targeting oncogenic NRAS-driven melanomas require decrease in both pERK and pAKT downstream of RAS-effectors for efficacy. This can be achieved by either targeting both BRAF and CRAF or BRAF and PIK3CA simultaneously in NRAS mutant tumor cells.


Clinical Cancer Research | 2009

Suppression of HER2/HER3-Mediated Growth of Breast Cancer Cells with Combinations of GDC-0941 PI3K Inhibitor, Trastuzumab, and Pertuzumab

Evelyn Yao; Wei Zhou; Si Tuen Lee-Hoeflich; Tom Truong; Peter M. Haverty; Jeffrey Eastham-Anderson; Nicholas Lewin-Koh; Bert Gunter; Marcia Belvin; Lesley J. Murray; Lori Friedman; Mark X. Sliwkowski; Klaus P. Hoeflich

Purpose: Oncogenic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is prevalent in breast cancer and has been associated with resistance to HER2 inhibitors in the clinic. We therefore investigated the combinatorial activity of GDC-0941, a novel class I PI3K inhibitor, with standard-of-care therapies for HER2-amplified breast cancer. Experimental Design: Three-dimensional laminin-rich extracellular matrix cultures of human breast cancer cells were utilized to provide a physiologically relevant approach to analyze the efficacy and molecular mechanism of combination therapies ex vivo. Combination studies were done using GDC-0941 with trastuzumab (Herceptin), pertuzumab, lapatinib (Tykerb), and docetaxel, the principal therapeutic agents that are either approved or being evaluated for treatment of early HER2-positive breast cancer. Results: Significant GDC-0941 activity (EC50 <1 μmol/L) was observed for >70% of breast cancer cell lines that were examined in three-dimensional laminin-rich extracellular matrix culture. Differential responsiveness to GDC-0941 as a single agent was observed for luminal breast cancer cells upon stimulation with the HER3 ligand, heregulin. Combined treatment of GDC-0941, trastuzumab, and pertuzumab resulted in growth inhibition, altered acinar morphology, and suppression of AKT mitogen-activated protein kinase (MAPK) / extracellular signed-regulated kinase (ERK) kinase and MEK effector signaling pathways for HER2-amplified cells in both normal and heregulin-supplemented media. The GDC-0941 and lapatinib combination further showed that inhibition of HER2 activity was essential for maximum combinatorial efficacy. PI3K inhibition also rendered HER2-amplified BT-474M1 cells and tumor xenografts more sensitive to docetaxel. Conclusions: GDC-0941 is efficacious in preclinical models of breast cancer. The addition of GDC-0941 to HER2-directed treatment could augment clinical benefit in breast cancer patients.


Nature | 2015

Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung

Daniel Lafkas; Amy Shelton; Cecilia Chiu; Gladys de Leon Boenig; Yongmei Chen; Scott Stawicki; Christian Siltanen; Mike Reichelt; Meijuan Zhou; Xiumin Wu; Jeffrey Eastham-Anderson; Heather Moore; Meron Roose-Girma; Yvonne Chinn; Julie Q. Hang; Søren Warming; Jackson G. Egen; Wyne P. Lee; Cary D. Austin; Yan Wu; Jian Payandeh; John B. Lowe; Christian W. Siebel

Prevailing dogma holds that cell–cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.

Collaboration


Dive into the Jeffrey Eastham-Anderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge