Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey R. Jacobson is active.

Publication


Featured researches published by Jeffrey R. Jacobson.


Journal of Biological Chemistry | 2005

Activated protein C mediates novel lung endothelial barrier enhancement: Role of sphingosine 1-phosphate receptor transactivation

James H. Finigan; Steven M. Dudek; Patrick A. Singleton; Eddie T. Chiang; Jeffrey R. Jacobson; Sara M. Camp; Shiu Q. Ye; Joe G. N. Garcia

Increased endothelial cell (EC) permeability is central to the pathophysiology of inflammatory syndromes such as sepsis and acute lung injury (ALI). Activated protein C (APC), a serine protease critically involved in the regulation of coagulation and inflammatory processes, improves sepsis survival through an unknown mechanism. We hypothesized a direct effect of APC to both prevent increased EC permeability and to restore vascular integrity after edemagenic agonists. We measured changes in transendothelial electrical resistance (TER) and observed that APC produced concentration-dependent attenuation of TER reductions evoked by thrombin. We next explored known EC barrier-protective signaling pathways and observed dose-dependent APC-mediated increases in cortical myosin light chain (MLC) phosphorylation in concert with cortically distributed actin polymerization, findings highly suggestive of Rac GTPase involvement. We next determined that APC directly increases Rac1 activity, with inhibition of Rac1 activity significantly attenuating APC-mediated barrier protection to thrombin challenge. Finally, as these signaling events were similar to those evoked by the potent EC barrier-enhancing agonist, sphingosine 1-phosphate (S1P), we explored potential cross-talk between endothelial protein C receptor (EPCR) and S1P1, the receptors for APC and S1P, respectively. EPCR-blocking antibody (RCR-252) significantly attenuated both APC-mediated barrier protection and increased MLC phosphorylation. We next observed rapid, EPCR and PI 3-kinase-dependent, APC-mediated phosphorylation of S1P1 on threonine residues consistent with S1P1 receptor activation. Co-immunoprecipitation studies demonstrate an interaction between EPCR and S1P1 upon APC treatment. Targeted silencing of S1P1 expression using siRNA significantly reduced APC-mediated barrier protection against thrombin. These data suggest that novel EPCR ligation and S1P1 transactivation results in EC cytoskeletal rearrangement and barrier protection, components potentially critical to the improved survival of APC-treated patients with severe sepsis.


American Journal of Respiratory Cell and Molecular Biology | 2010

Differential Effects of Sphingosine 1–Phosphate Receptors on Airway and Vascular Barrier Function in the Murine Lung

Saad Sammani; Liliana Moreno-Vinasco; Tamara Mirzapoiazova; Patrick A. Singleton; Eddie T. Chiang; Carrie Evenoski; Ting Wang; Biji Mathew; Aliya N. Husain; Jaideep Moitra; Xiaoguang Sun; Luis Nuñez; Jeffrey R. Jacobson; Steven M. Dudek; Viswanathan Natarajan; Joe G. N. Garcia

The therapeutic options for ameliorating the profound vascular permeability, alveolar flooding, and organ dysfunction that accompanies acute inflammatory lung injury (ALI) remain limited. Extending our previous finding that the intravenous administration of the sphingolipid angiogenic factor, sphingosine 1-phosphate (S1P), attenuates inflammatory lung injury and vascular permeability via ligation of S1PR(1), we determine that a direct intratracheal or intravenous administration of S1P, or a selective S1P receptor (S1PR(1)) agonist (SEW-2871), produces highly concentration-dependent barrier-regulatory responses in the murine lung. The intratracheal or intravenous administration of S1P or SEW-2871 at < 0.3 mg/kg was protective against LPS-induced murine lung inflammation and permeability. However, intratracheal delivery of S1P at 0.5 mg/kg (for 2 h) resulted in significant alveolar-capillary barrier disruption (with a 42% increase in bronchoalveolar lavage protein), and produced rapid lethality when delivered at 2 mg/kg. Despite the greater selectivity for S1PR(1), intratracheally delivered SEW-2871 at 0.5 mg/kg also resulted in significant alveolar-capillary barrier disruption, but was not lethal at 2 mg/kg. Consistent with the S1PR(1) regulation of alveolar/vascular barrier function, wild-type mice pretreated with the S1PR(1) inverse agonist, SB-649146, or S1PR(1)(+/-) mice exhibited reduced S1P/SEW-2871-mediated barrier protection after challenge with LPS. In contrast, S1PR(2)(-/-) knockout mice as well as mice with reduced S1PR(3) expression (via silencing S1PR3-containing nanocarriers) were protected against LPS-induced barrier disruption compared with control mice. These studies underscore the potential therapeutic effects of highly selective S1PR(1) receptor agonists in reducing inflammatory lung injury, and highlight the critical role of the S1P delivery route, S1PR(1) agonist concentration, and S1PR(1) expression in target tissues.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

Endothelial cell barrier protection by simvastatin: GTPase regulation and NADPH oxidase inhibition

Weiguo Chen; Srikanth Pendyala; Viswanathan Natarajan; Joe G. N. Garcia; Jeffrey R. Jacobson

The statins, hydroxy-3-methylglutaryl-CoA reductase inhibitors that lower serum cholesterol, exhibit myriad clinical benefits, including enhanced vascular integrity. One potential mechanism underlying increased endothelial cell (EC) barrier function is inhibition of geranylgeranylation, a covalent modification enabling translocation of the small GTPases Rho and Rac to the cell membrane. While RhoA inhibition attenuates actin stress fiber formation and promotes EC barrier function, Rac1 inhibition at the cell membrane potentially prevents activation of NADPH oxidase and subsequent generation of superoxides known to induce barrier disruption. We examined the relative regulatory effects of simvastatin on RhoA, Rac1, and NADPH oxidase activities in the context of human pulmonary artery EC barrier protection. Confluent EC treated with simvastatin demonstrated significantly decreased thrombin-induced FITC-dextran permeability, a reflection of vascular integrity, which was linked temporally to simvastatin-mediated actin cytoskeletal rearrangement. Compared with Rho inhibition alone (Y-27632), simvastatin afforded additional protection against thrombin-mediated barrier dysfunction and attenuated LPS-induced EC permeability and superoxide generation. Statin-mediated inhibition of both Rac translocation to the cell membrane and superoxide production were attenuated by geranylgeranyl pyrophosphate (GGPP), indicating that these effects are due to geranylgeranylation inhibition. Finally, thrombin-induced EC permeability was modestly attenuated by reduced Rac1 expression (small interfering RNA), whereas these effects were made more pronounced by simvastatin pretreatment. Together, these data suggest EC barrier protection by simvastatin is due to dual inhibitory effects on RhoA and Rac1 as well as the attenuation of superoxide generation by EC NADPH oxidase and contribute to the molecular mechanistic understanding of the modulation of EC barrier properties by simvastatin.


American Journal of Respiratory and Critical Care Medicine | 2008

Essential Role of Pre-B-Cell Colony Enhancing Factor in Ventilator-induced Lung Injury

Sang Bum Hong; Yong Huang; Liliana Moreno-Vinasco; Saad Sammani; Jaideep Moitra; Joseph W. Barnard; Shwu Fan Ma; Tamara Mirzapoiazova; Carrie Evenoski; Ryan R. Reeves; Eddie T. Chiang; Gabriel Lang; Aliya N. Husain; Steven M. Dudek; Jeffrey R. Jacobson; Shui Q. Ye; Yves A. Lussier; Joe G. N. Garcia

RATIONALE We previously demonstrated pre-B-cell colony enhancing factor (PBEF) as a biomarker in sepsis and sepsis-induced acute lung injury (ALI) with genetic variants conferring ALI susceptibility. OBJECTIVES To explore mechanistic participation of PBEF in ALI and ventilator-induced lung injury (VILI). METHODS Two models of VILI were utilized to explore the role of PBEF using either recombinant PBEF or PBEF(+/-) mice. MEASUREMENTS AND MAIN RESULTS Initial in vitro studies demonstrated recombinant human PBEF (rhPBEF) as a direct rat neutrophil chemotactic factor with in vivo studies demonstrating marked increases in bronchoalveolar lavage (BAL) leukocytes (PMNs) after intratracheal injection in C57BL/6J mice. These changes were accompanied by increased BAL levels of PMN chemoattractants (KC and MIP-2) and modest increases in lung vascular and alveolar permeability. We next explored the potential synergism between rhPBEF challenge (intratracheal) and a model of limited VILI (4 h, 30 ml/kg tidal volume) and observed dramatic increases in BAL PMNs, BAL protein, and cytokine levels (IL-6, TNF-alpha, KC) compared with either challenge alone. Gene expression profiling identified induction of ALI- and VILI-associated gene modules (nuclear factor-kappaB, leukocyte extravasation, apoptosis, Toll receptor pathways). Heterozygous PBEF(+/-) mice were significantly protected (reduced BAL protein, BAL IL-6 levels, peak inspiratory pressures) when exposed to a model of severe VILI (4 h, 40 ml/kg tidal volume) and exhibited significantly reduced expression of VILI-associated gene expression modules. Finally, strategies to reduce PBEF availability (neutralizing antibody) resulted in significant protection from VILI. CONCLUSIONS These studies implicate PBEF as a key inflammatory mediator intimately involved in both the development and severity of ventilator-induced ALI.


Microvascular Research | 2009

Enhanced interaction between focal adhesion and adherens junction proteins: Involvement in sphingosine 1-phosphate-induced endothelial barrier enhancement

Xiaoguang Sun; Yasushi Shikata; Lichun Wang; Kazuyoshi Ohmori; Naoko Watanabe; Jun Wada; Kenichi Shikata; Konstantin G. Birukov; Hirofumi Makino; Jeffrey R. Jacobson; Steven M. Dudek; Joe G. N. Garcia

Sphingosine 1-phosphate (S1P) is an important vascular barrier regulatory agonist which enhances the junctional integrity of human lung endothelial cell monolayers. We have now demonstrated that S1P induced cortical actin ring formation and redistribution of focal adhesion kinase (FAK) and paxillin to the cell periphery suggesting the critical role of cell-cell adhesion in endothelial barrier enhancement. Co-immunoprecipitation studies revealed increased association of VE-cadherin with FAK and paxillin in S1P-challenged human pulmonary artery endothelial cell (HPAEC) monolayers. Furthermore, S1P-induced enhancement of VE-cadherin interaction with alpha-catenin and beta-catenin was associated with the increased formation of FAK-beta-catenin protein complexes. Depletion of beta-catenin (siRNA) resulted in loss of S1P-mediated VE-cadherin association with FAK and paxillin rearrangement. Furthermore, transendothelial electrical resistance (an index of barrier function) demonstrated that beta-catenin siRNA significantly attenuated S1P-induced barrier enhancement. These results demonstrate a mechanism of S1P-induced endothelial barrier enhancement via beta-catenin-linked adherens junction and focal adhesion interaction.


American Journal of Respiratory Cell and Molecular Biology | 2013

Sphingosine-1–Phosphate, FTY720, and Sphingosine-1–Phosphate Receptors in the Pathobiology of Acute Lung Injury

Viswanathan Natarajan; Steven M. Dudek; Jeffrey R. Jacobson; Liliana Moreno-Vinasco; Long Shuang Huang; Taimur Abassi; Biji Mathew; Yutong Zhao; Lichun Wang; Robert Bittman; Ralph R. Weichselbaum; Evgeny Berdyshev; Joe G. N. Garcia

Acute lung injury (ALI) attributable to sepsis or mechanical ventilation and subacute lung injury because of ionizing radiation (RILI) share profound increases in vascular permeability as a key element and a common pathway driving increased morbidity and mortality. Unfortunately, despite advances in the understanding of lung pathophysiology, specific therapies do not yet exist for the treatment of ALI or RILI, or for the alleviation of unremitting pulmonary leakage, which serves as a defining feature of the illness. A critical need exists for new mechanistic insights that can lead to novel strategies, biomarkers, and therapies to reduce lung injury. Sphingosine 1-phosphate (S1P) is a naturally occurring bioactive sphingolipid that acts extracellularly via its G protein-coupled S1P1-5 as well as intracellularly on various targets. S1P-mediated cellular responses are regulated by the synthesis of S1P, catalyzed by sphingosine kinases 1 and 2, and by the degradation of S1P mediated by lipid phosphate phosphatases, S1P phosphatases, and S1P lyase. We and others have demonstrated that S1P is a potent angiogenic factor that enhances lung endothelial cell integrity and an inhibitor of vascular permeability and alveolar flooding in preclinical animal models of ALI. In addition to S1P, S1P analogues such as 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720), FTY720 phosphate, and FTY720 phosphonates offer therapeutic potential in murine models of lung injury. This translational review summarizes the roles of S1P, S1P analogues, S1P-metabolizing enzymes, and S1P receptors in the pathophysiology of lung injury, with particular emphasis on the development of potential novel biomarkers and S1P-based therapies for ALI and RILI.


Journal of Biological Chemistry | 2007

Regulation of hyperoxia-induced NADPH oxidase activation in human lung endothelial cells by the actin cytoskeleton and cortactin

Peter V. Usatyuk; Lewis H. Romer; Donghong He; Narasimham L. Parinandi; Michael Kleinberg; Steve Zhan; Jeffrey R. Jacobson; Steven M. Dudek; Srikanth Pendyala; Joe G. N. Garcia; Viswanathan Natarajan

Although the actin cytoskeleton has been implicated in the control of NADPH oxidase in phagocytosis, very little is known about the cytoskeletal regulation of endothelial NADPH oxidase assembly and activation. Here, we report a role for cortactin and the tyrosine phosphorylation of cortactin in hyperoxia-induced NADPH oxidase activation and ROS production in human pulmonary artery ECs (HPAECs). Exposure of HPAECs to hyperoxia for 3 h induced NADPH oxidase activation, as demonstrated by enhanced superoxide production. Hyperoxia also caused a thickening of the subcortical dense peripheral F-actin band and increased the localization of cortactin in the cortical regions and lamellipodia at cell-cell borders that protruded under neighboring cells. Pretreatment of HPAECs with the actin-stabilizing agent phallacidin attenuated hyperoxia-induced cortical actin thickening and ROS production, whereas cytochalasin D and latrunculin A enhanced basal and hyperoxia-induced ROS formation. In HPAECs, a 3-h hyperoxic exposure enhanced the tyrosine phosphorylation of cortactin and interaction between cortactin and p47phox, a subcomponent of the EC NADPH oxidase, when compared with normoxic cells. Furthermore, transfection of HPAECs with cortactin small interfering RNA or myristoylated cortactin Src homology domain 3 blocking peptide attenuated ROS production and the hyperoxia-induced translocation of p47phox to the cell periphery. Similarly, down-regulation of Src with Src small interfering RNA attenuated the hyperoxia-mediated phosphorylation of cortactin tyrosines and blocked the association of cortactin with actin and p47phox. In addition, the hyperoxia-induced generation of ROS was significantly lower in ECs expressing a tyrosine-deficient mutant of cortactin than in vector control or wild-type cells. These data demonstrate a novel function for cortactin and actin in hyperoxia-induced activation of NADPH oxidase and ROS generation in human lung endothelial cells.


Circulation Research | 2005

Signaling Pathways Involved in Adenosine Triphosphate-Induced Endothelial Cell Barrier Enhancement

Irina A. Kolosova; Tamara Mirzapoiazova; Djanybek Adyshev; Peter V. Usatyuk; Lewis H. Romer; Jeffrey R. Jacobson; Viswanathan Natarajan; David B. Pearse; Joe G. N. Garcia; Alexander D. Verin

Endothelial barrier dysfunction caused by inflammatory agonists is a frequent underlying cause of vascular leak and edema. Novel strategies to preserve barrier integrity could have profound clinical impact. Adenosine triphosphate (ATP) released from endothelial cells by shear stress and injury has been shown to protect the endothelial barrier in some settings. We have demonstrated that ATP and its nonhydrolyzed analogues enhanced barrier properties of cultured endothelial cell monolayers and caused remodeling of cell–cell junctions. Increases in cytosolic Ca2+ and Erk activation caused by ATP were irrelevant to barrier enhancement. Experiments using biochemical inhibitors or siRNA indicated that G proteins (specifically G&agr;q and G&agr;i2), protein kinase A (PKA), and the PKA substrate vasodilator-stimulated phosphoprotein were involved in ATP-induced barrier enhancement. ATP treatment decreased phosphorylation of myosin light chain and specifically activated myosin-associated phosphatase. Depletion of G&agr;q with siRNA prevented ATP-induced activation of myosin phosphatase. We conclude that the mechanisms of ATP-induced barrier enhancement are independent of intracellular Ca2+, but involve activation of myosin phosphatase via a novel G-protein–coupled mechanism and PKA.


Current Drug Targets | 2007

Novel therapies for microvascular permeability in sepsis

Jeffrey R. Jacobson; Joe G. N. Garcia

Sepsis is characterized physiologically by an aberrant systemic inflammatory response and microvascular dysfunction. While appropriate antibiotics and supportive care are essential in the management of the septic patient, therapies targeting specific aspects of the pathophysiology could have a significant impact on the morbidity and mortality associated with both sepsis and its sequlea, including acute lung injury (ALI). We have characterized several mediators of endothelial cell (EC) barrier function that may serve as novel therapies for sepsis-induced microvascular dysfunction including simvastatin, adenosine triphosphate (ATP), sphingosine 1-phosphate (S1P), and activated protein C (APC). Notably, APC is already available for the treatment of severe sepsis, however, to date its mechanism of action has been unclear. While distinct in many ways, we have found that these agonists have in common the ability to induce dynamic rearrangement of the EC actin cytoskeleton that corresponds to barrier protection. In addition, we have extended our in vitro findings to relevant animal models of endotoxin-induced acute lung injury and have confirmed beneficial effects of both simvastatin and S1P which are associated with evidence of decreased vascular permeability in this setting. Moreover, our data also indicate that APC effects in sepsis may be largely due to augmentation of EC barrier function affecting decreased microvascular permeability. We speculate that the administration of direct modulators of EC barrier function and microvascular permeability, such as those described here, may ultimately become the standard of care for the septic patient.


American Journal of Respiratory Cell and Molecular Biology | 2011

Type 2 Deiodinase and Host Responses of Sepsis and Acute Lung Injury

Shwu Fan Ma; Lishi Xie; Maria Pino-Yanes; Saad Sammani; Michael S. Wade; Eleftheria Letsiou; Jessica Siegler; Ting Wang; Giovanni Infusino; Rick A. Kittles; Carlos Flores; Tong Zhou; Bellur S. Prabhakar; Liliana Moreno-Vinasco; Jesús Villar; Jeffrey R. Jacobson; Steven M. Dudek; Joe G. N. Garcia

The role of thyroid hormone metabolism in clinical outcomes of the critically ill remains unclear. Using preclinical models of acute lung injury (ALI), we assessed the gene and protein expression of type 2 deiodinase (DIO2), a key driver for synthesis of biologically active triiodothyronine, and addressed potential association of DIO2 genetic variants with ALI in a multiethnic cohort. DIO2 gene and protein expression levels in murine lung were validated by microarrays and immunoblotting. Lung injury was assessed by levels of bronchoalveolar lavage protein and leukocytes. Single-nucleotide polymorphisms were genotyped and ALI susceptibility association assessed. Significant increases in both DIO2 gene and D2 protein expression were observed in lung tissues from murine ALI models (LPS- and ventilator-induced lung injury), with expression directly increasing with the extent of lung injury. Mice with reduced levels of DIO2 expression (by silencing RNA) demonstrated reduced thyroxine levels in plasma and increased lung injury (increased bronchoalveolar lavage protein and leukocytes), suggesting a protective role for DIO2 in ALI. The G (Ala) allele of the Thr92Ala coding single-nucleotide polymorphism (rs225014) was protective in severe sepsis and severe sepsis-associated ALI after adjustments for age, sex, and genetic ancestry in a logistic regression model in European Americans. Our studies indicate that DIO2 is a novel ALI candidate gene, the nonsynonymous Thr92Ala coding variant of which confers ALI protection. Increased DIO2 expression may dampen the ALI inflammatory response, thereby strengthening the premise that thyroid hormone metabolism is intimately linked to the integrated response to inflammatory injury in critically ill patients.

Collaboration


Dive into the Jeffrey R. Jacobson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saad Sammani

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Weiguo Chen

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Viswanathan Natarajan

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Liliana Moreno-Vinasco

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Biji Mathew

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ting Wang

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge