Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenni Hultman is active.

Publication


Featured researches published by Jenni Hultman.


The ISME Journal | 2012

Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill.

Olivia U. Mason; Terry C. Hazen; Sharon E. Borglin; Patrick Chain; Eric A. Dubinsky; Julian L. Fortney; James Han; Hoi-Ying N. Holman; Jenni Hultman; Regina Lamendella; Rachel Mackelprang; Stephanie Malfatti; Lauren M. Tom; Susannah G. Tringe; Tanja Woyke; Jizhong Zhou; Edward M. Rubin; Janet K. Jansson

The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.


BMC Microbiology | 2010

Bacterial diversity at different stages of the composting process

Pasi Partanen; Jenni Hultman; Lars Paulin; Petri Auvinen; Martin Romantschuk

BackgroundComposting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA.ResultsOver 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts.ConclusionsInterestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.


Nature | 2015

Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

Jenni Hultman; Mark P. Waldrop; Rachel Mackelprang; Maude M. David; Jack W. McFarland; Steven J. Blazewicz; Jennifer W. Harden; Merritt R. Turetsky; A. David McGuire; Manesh B Shah; Nathan C. VerBerkmoes; Lang Ho Lee; Konstantinos Mavrommatis; Janet K. Jansson

Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular ‘omics’ approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.


Frontiers in Microbiology | 2014

Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities

Regina Lamendella; Steven Strutt; Sharon E. Borglin; Romy Chakraborty; Neslihan Taş; Olivia U. Mason; Jenni Hultman; Emmanuel Prestat; Terry C. Hazen; Janet K. Jansson

One of the major environmental concerns of the Deepwater Horizon oil spill in the Gulf of Mexico was the ecological impact of the oil that reached shorelines of the Gulf Coast. Here we investigated the impact of the oil on the microbial composition in beach samples collected in June 2010 along a heavily impacted shoreline near Grand Isle, Louisiana. Successional changes in the microbial community structure due to the oil contamination were determined by deep sequencing of 16S rRNA genes. Metatranscriptomics was used to determine expression of functional genes involved in hydrocarbon degradation processes. In addition, potential hydrocarbon-degrading Bacteria were obtained in culture. The 16S data revealed that highly contaminated samples had higher abundances of Alpha- and Gammaproteobacteria sequences. Successional changes in these classes were observed over time, during which the oil was partially degraded. The metatranscriptome data revealed that PAH, n-alkane, and toluene degradation genes were expressed in the contaminated samples, with high homology to genes from Alteromonadales, Rhodobacterales, and Pseudomonales. Notably, Marinobacter (Gammaproteobacteria) had the highest representation of expressed genes in the samples. A Marinobacter isolated from this beach was shown to have potential for transformation of hydrocarbons in incubation experiments with oil obtained from the Mississippi Canyon Block 252 (MC252) well; collected during the Deepwater Horizon spill. The combined data revealed a response of the beach microbial community to oil contaminants, including prevalence of Bacteria endowed with the functional capacity to degrade oil.


International Journal of Food Microbiology | 2012

Comparison of microbial communities in marinated and unmarinated broiler meat by metagenomics

Timo Nieminen; Kaisa Koskinen; Pia Laine; Jenni Hultman; Elina Säde; Lars Paulin; A. Paloranta; Johanna Björkroth; Petri Auvinen

Most raw poultry sold in Finland at the retail level is mixed with marinades containing oil, sugar, spices and acetic acid and packaged under modified atmosphere. Premature spoilage of marinated poultry preparations has been observed and associated with high levels of Leuconostoc spp. in meat. In this study we investigated whether marination of broiler fillet strips increased the proportion of Leuconostoc spp. in the microbial communities. To obtain a comprehensive view of the microbiota, we sequenced total DNA and 16S rRNA gene amplicons from the microbial communities. The lactic acid bacterial communities were characterized also by identification of colonies. The results showed that marinade increased the proportions of the spoilage-associated Leuconostoc gasicomitatum in the communities as well as the proportions of Leuconostoc gelidum and Lactobacillus spp. The proportions of Carnobacterium, Vagococcus, Brochothrix thrermosphacta, Clostridium, Enterobacteriaceae and Vibrio were diminished in marinated meat. Analysis of 16S rRNA gene amplicons resulted in 312 and 284 operational taxonomical units (dissimilarity 0.03) in unmarinated and marinated meat, respectively, indicating that the meat communities were more diverse than hitherto shown. Metagenomic analysis revealed a number of bacterial taxa that have not been associated with late shelf-life meat before, including Vagococcus and Vibrio that belonged to the predominating part of the microbial community in unmarinated meat. According to the functional analysis of the metagenomes, the communities in both marinated and unmarinated poultry were characterized by high proportions (15.6% or 17.9%) of genes involved in carbohydrate metabolism.


The ISME Journal | 2014

Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield.

Mari Nyyssönen; Jenni Hultman; Lasse Ahonen; Ilmo T. Kukkonen; Lars Paulin; Pia Laine; Merja Itävaara; Petri Auvinen

Microbial life in the nutrient-limited and low-permeability continental crystalline crust is abundant but remains relatively unexplored. Using high-throughput sequencing to assess the 16S rRNA gene diversity, we found diverse bacterial and archaeal communities along a 2516-m-deep drill hole in continental crystalline crust in Outokumpu, Finland. These communities varied at different sampling depths in response to prevailing lithology and hydrogeochemistry. Further analysis by shotgun metagenomic sequencing revealed variable carbon and nutrient utilization strategies as well as specific functional and physiological adaptations uniquely associated with specific environmental conditions. Altogether, our results show that predominant geological and hydrogeochemical conditions, including the existence and connectivity of fracture systems and the low amounts of available energy, have a key role in controlling microbial ecology and evolution in the nutrient and energy-poor deep crustal biosphere.


Journal of Applied Microbiology | 2010

Determination of fungal succession during municipal solid waste composting using a cloning‐based analysis

Jenni Hultman; T. Vasara; Pasi Partanen; Jukka Kurola; M.H. Kontro; Lars Paulin; Petri Auvinen; Martin Romantschuk

Aims:  The microbiota at industrial full‐scale composting plants has earlier been fragmentarily studied with molecular methods. Here, fungal communities from different stages of a full‐scale and a pilot‐scale composting reactors were studied before and after wood ash amendment.


FEMS Microbiology Ecology | 2011

Spatially differing bacterial communities in water columns of the northern Baltic Sea.

Kaisa Koskinen; Jenni Hultman; Lars Paulin; Petri Auvinen; Harri Kankaanpää

The Baltic Sea is a large, shallow, and strongly stratified brackish water basin. It suffers from eutrophication, toxic cyanobacterial blooms, and oxygen depletion, all of which pose a threat to local marine communities. In this study, the diversity and community structure of the northern Baltic Sea bacterial communities in the water column were, for the first time, thoroughly studied by 454 sequencing. The spring and autumn bacterial communities were one order of magnitude less diverse than those in recently studied oceanic habitats. Patchiness and strong stratification were clearly detectable; <1% of operational taxonomic units were shared among 11 samples. The community composition was more uniform horizontally (at a fixed depth) between different sites than vertically within one sampling site, implying that the community structure was affected by prevailing physical and hydrochemical conditions. Taxonomic affiliations revealed a total of 23 bacterial classes and 169 genera, while 5% of the sequences remained unclassified. The cyanobacteria accounted for <2% of the sequences, and potentially toxic cyanobacterial genera were essentially absent during the sampling seasons.


Nucleic Acids Research | 2014

FOAM (Functional Ontology Assignments for Metagenomes): A Hidden Markov Model (HMM) database with environmental focus

Emmanuel Prestat; Maude M. David; Jenni Hultman; Neslihan Taş; Regina Lamendella; Jill Dvornik; Rachel Mackelprang; David D. Myrold; Ari Jumpponen; Susannah G. Tringe; Konstantinos Mavromatis; Janet K. Jansson

A new functional gene database, FOAM (Functional Ontology Assignments for Metagenomes), was developed to screen environmental metagenomic sequence datasets. FOAM provides a new functional ontology dedicated to classify gene functions relevant to environmental microorganisms based on Hidden Markov Models (HMMs). Sets of aligned protein sequences (i.e. ‘profiles’) were tailored to a large group of target KEGG Orthologs (KOs) from which HMMs were trained. The alignments were checked and curated to make them specific to the targeted KO. Within this process, sequence profiles were enriched with the most abundant sequences available to maximize the yield of accurate classifier models. An associated functional ontology was built to describe the functional groups and hierarchy. FOAM allows the user to select the target search space before HMM-based comparison steps and to easily organize the results into different functional categories and subcategories. FOAM is publicly available at http://portal.nersc.gov/project/m1317/FOAM/.


Applied and Environmental Microbiology | 2015

Meat Processing Plant Microbiome and Contamination Patterns of Cold-Tolerant Bacteria Causing Food Safety and Spoilage Risks in the Manufacture of Vacuum-Packaged Cooked Sausages

Jenni Hultman; Riitta Rahkila; Javeria Ali; Juho Rousu; K. Johanna Björkroth

ABSTRACT Refrigerated food processing facilities are specific man-made niches likely to harbor cold-tolerant bacteria. To characterize this type of microbiota and study the link between processing plant and product microbiomes, we followed and compared microbiota associated with the raw materials and processing stages of a vacuum-packaged, cooked sausage product affected by a prolonged quality fluctuation with occasional spoilage manifestations during shelf life. A total of 195 samples were subjected to culturing and amplicon sequence analyses. Abundant mesophilic psychrotrophs were detected within the microbiomes throughout the different compartments of the production plant environment. However, each of the main genera of food safety and quality interest, e.g., Leuconostoc, Brochothrix, and Yersinia, had their own characteristic patterns of contamination. Bacteria from the genus Leuconostoc, commonly causing spoilage of cold-stored, modified-atmosphere-packaged foods, were detected in high abundance (up to >98%) in the sausages studied. The same operational taxonomic units (OTUs) were, however, detected in lower abundances in raw meat and emulsion (average relative abundance of 2% ± 5%), as well as on the processing plant surfaces (<4%). A completely different abundance profile was found for OTUs phylogenetically close to the species Yersinia pseudotuberculosis. These OTUs were detected in high abundance (up to 28%) on the processing plant surfaces but to a lesser extent (<1%) in raw meat, sausage emulsion, and sausages. The fact that Yersinia-like OTUs were found on the surfaces of a high-hygiene packaging compartment raises food safety concerns related to their resilient existence on surfaces.

Collaboration


Dive into the Jenni Hultman's collaboration.

Top Co-Authors

Avatar

Lars Paulin

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marko Virta

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Janet K. Jansson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge