Jennie Conroy
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennie Conroy.
The International Journal of Neuropsychopharmacology | 2013
Jack Bergman; Rebecca A. Roof; Cheryse A. Furman; Jennie Conroy; Nancy K. Mello; David R. Sibley; Phil Skolnick
Converging lines of evidence indicate that elevations in synaptic dopamine levels play a pivotal role in the reinforcing effects of cocaine, which are associated with its abuse liability. This evidence has led to the exploration of dopamine receptor blockers as pharmacotherapy for cocaine addiction. While neither D1 nor D2 receptor antagonists have proven effective, medications acting at two other potential targets, D3 and D4 receptors, have yet to be explored for this indication in the clinic. Buspirone, a 5-HT1A partial agonist approved for the treatment of anxiety, has been reported to also bind with high affinity to D3 and D4 receptors. In view of this biochemical profile, the present research was conducted to examine both the functional effects of buspirone on these receptors and, in non-human primates, its ability to modify the reinforcing effects of i.v. cocaine in a behaviourally selective manner. Radioligand binding studies confirmed that buspirone binds with high affinity to recombinant human D3 and D4 receptors (∼98 and ∼29 nm respectively). Live cell functional assays also revealed that buspirone, and its metabolites, function as antagonists at both D3 and D4 receptors. In behavioural studies, doses of buspirone that had inconsistent effects on food-maintained responding (0.1 or 0.3 mg/kg i.m.) produced a marked downward shift in the dose-effect function for cocaine-maintained behaviour, reflecting substantial decreases in self-administration of one or more unit doses of i.v. cocaine in each subject. These results support the further evaluation of buspirone as a candidate medication for the management of cocaine addiction.
Molecular Pharmacology | 2014
Free Rb; Chun Ls; Amy E. Moritz; Miller Bn; Doyle Tb; Jennie Conroy; Padron A; Julie Meade; Jingbo Xiao; Xin Hu; Andrés E. Dulcey; Yang Han; Lihua Duan; Steve Titus; Bryant-Genevier M; Elena Barnaeva; Marc Ferrer; Jonathan A. Javitch; Thijs Beuming; Lei Shi; Noel Southall; Juan J. Marugan; David R. Sibley
A high-throughput screening campaign was conducted to interrogate a 380,000+ small-molecule library for novel D2 dopamine receptor modulators using a calcium mobilization assay. Active agonist compounds from the primary screen were examined for orthogonal D2 dopamine receptor signaling activities including cAMP modulation and β-arrestin recruitment. Although the majority of the subsequently confirmed hits activated all signaling pathways tested, several compounds showed a diminished ability to stimulate β-arrestin recruitment. One such compound (MLS1547; 5-chloro-7-[(4-pyridin-2-ylpiperazin-1-yl)methyl]quinolin-8-ol) is a highly efficacious agonist at D2 receptor–mediated G protein–linked signaling, but does not recruit β-arrestin as demonstrated using two different assays. This compound does, however, antagonize dopamine-stimulated β-arrestin recruitment to the D2 receptor. In an effort to investigate the chemical scaffold of MLS1547 further, we characterized a set of 24 analogs of MLS1547 with respect to their ability to inhibit cAMP accumulation or stimulate β-arrestin recruitment. A number of the analogs were similar to MLS1547 in that they displayed agonist activity for inhibiting cAMP accumulation, but did not stimulate β-arrestin recruitment (i.e., they were highly biased). In contrast, other analogs displayed various degrees of G protein signaling bias. These results provided the basis to use pharmacophore modeling and molecular docking analyses to build a preliminary structure-activity relationship of the functionally selective properties of this series of compounds. In summary, we have identified and characterized a novel G protein–biased agonist of the D2 dopamine receptor and identified structural features that may contribute to its biased signaling properties.
ACS Chemical Neuroscience | 2015
Jennie Conroy; R. Benjamin Free; David R. Sibley
The D1 dopamine receptor (D1R) has been implicated in numerous neuropsychiatric disorders, and D1R-selective ligands have potential as therapeutic agents. Previous studies have identified substituted benzazepines as D1R-selective agonists, but the in vivo effects of these compounds have not correlated well with their in vitro pharmacological activities. A series of substituted benzazepines, and structurally dissimilar D1R-selective agonists, were tested for their functional effects on D1R-mediated cAMP accumulation, D1R-promoted β-arrestin recruitment, and D1R internalization using live cell functional assays. All compounds tested elicited an increase in the level of cAMP accumulation, albeit with a range of efficacies. However, when the compounds were evaluated for β-arrestin recruitment, a subset of substituted benzazepines, SKF83959, SKF38393, SKF82957, SKF77434, and SKF75670, failed to activate this pathway, whereas the others showed similar activation efficacies as seen with cAMP accumulation. When tested as antagonists, the five biased compounds all inhibited dopamine-stimulated β-arrestin recruitment. Further, D1R internalization assays revealed a corroborating pattern of activity in that the G protein-biased compounds failed to promote D1R internalization. Interestingly, the biased signaling was unique for the D1R, as the same compounds were agonists of the related D5 dopamine receptor (D5R), but revealed no signaling bias. We have identified a group of substituted benzazepine ligands that are agonists at D1R-mediated G protein signaling, but antagonists of D1R recruitment of β-arrestin, and also devoid of agonist-induced receptor endocytosis. These data may be useful for interpreting the contrasting effects of these compounds in vitro versus in vivo, and also for the understanding of pathway-selective signaling of the D1R.
Journal of Medicinal Chemistry | 2014
Jingbo Xiao; R. Benjamin Free; Elena Barnaeva; Jennie Conroy; Trevor Doyle; Miller Bn; Marthe Bryant-Genevier; Mercedes K. Taylor; Xin Hu; Andrés E. Dulcey; Noel Southall; Marc Ferrer; Steve Titus; Wei Zheng; David R. Sibley; Juan J. Marugan
The D2 dopamine receptor (D2 DAR) is one of the most validated drug targets for neuropsychiatric and endocrine disorders. However, clinically approved drugs targeting D2 DAR display poor selectivity between the D2 and other receptors, especially the D3 DAR. This lack of selectivity may lead to undesirable side effects. Here we describe the chemical and pharmacological characterization of a novel D2 DAR antagonist series with excellent D2 versus D1, D3, D4, and D5 receptor selectivity. The final probe 65 was obtained through a quantitative high-throughput screening campaign, followed by medicinal chemistry optimization, to yield a selective molecule with good in vitro physical properties, metabolic stability, and in vivo pharmacokinetics. The optimized molecule may be a useful in vivo probe for studying D2 DAR signal modulation and could also serve as a lead compound for the development of D2 DAR-selective druglike molecules for the treatment of multiple neuropsychiatric and endocrine disorders.
Psychopharmacology | 2015
Julie Meade; R. Benjamin Free; Nicole Miller; Lani S. Chun; Trevor Doyle; Amy E. Moritz; Jennie Conroy; Val J. Watts; David R. Sibley
Rationale(−)-Stepholidine is a tetrahydroberberine alkaloid that is known to interact with dopamine receptors and has also been proposed as a novel antipsychotic agent. Its suggested novelty lies in the fact that it has been proposed to have D1-like receptor agonist and D2-like receptor antagonist properties. Thus, it might be effective in treating both positive and negative (cognition) symptoms of schizophrenia. However, its activity on specific dopamine receptor subtypes has not been clarified, especially with respect to its ability to activate D1-like receptors.ObjectivesWe wished to examine the affinity and functional activity of (−)-stepholidine at each of the human dopamine receptor subtypes expressed in a defined cellular environment.MethodsD1–D5 dopamine receptors were stably expressed in cell lines and their interactions with (−)-stepholidine were examined using radioligand binding and various functional signaling assays. Radioligand binding assays were also performed using bovine striatal membranes.Results(−)-Stepholidine exhibited high (nM) affinity for D1 and D5 receptors, somewhat lower (two- to four-fold) affinity for D2 and D3 receptors, and low micromolar affinity for D4 receptors. Functionally, (−)-stepholidine was ineffective in activating G protein-mediated signaling of D1-like and D2 receptors and was also ineffective in stimulating β-arrestin recruitment to any dopamine receptor subtype. It did, however, antagonize all of these responses. It also antagonized D1–D2 heteromer-mediated Ca2+ mobilization. Radioligand binding assays of D1-like receptors in brain membranes also indicated that (−)-stepholidine binds to the D1 receptor with antagonist-like properties.Conclusions(−)-Stepholidine is a pan-dopamine receptor antagonist and its in vivo effects are largely mediated through dopamine receptor blockade with potential cross-talk to other receptors or signaling proteins.
ACS Medicinal Chemistry Letters | 2015
Andrew V. Dix; Jennie Conroy; Kara M. George Rosenker; David R. Sibley; Daniel H. Appella
Peptide nucleic acid scaffolds represent a promising tool to interrogate the multivalent effects of ligand binding to a membrane receptor. Dopamine D2 receptors (D2R) are a class of G-protein coupled receptors (GPCRs), and the formation of higher-ordered structures of these receptors has been associated with the progression of several neurological diseases. In this Letter, we describe the synthesis of a library of ligand-modified PNAs bearing a known D2R agonist, (±)-PPHT. The D2R activity for each construct was assessed, and the multivalent effects were evaluated.
Molecular Pharmacology | 2018
Kathryn D. Luderman; Jennie Conroy; R. Benjamin Free; Noel Southall; Marc Ferrer; Marta Sánchez-Soto; Amy E. Moritz; Blair K. A. Willette; Tim J. Fyfe; Prashi Jain; Steve Titus; Lisa A. Hazelwood; Jeffrey Aubé; J. Robert Lane; Kevin J. Frankowski; David R. Sibley
The D1 dopamine receptor is linked to a variety of neuropsychiatric disorders and represents an attractive drug target for the enhancement of cognition in schizophrenia, Alzheimer disease, and other disorders. Positive allosteric modulators (PAMs), with their potential for greater selectivity and larger therapeutic windows, may represent a viable drug development strategy, as orthosteric D1 receptor agonists possess known clinical liabilities. We discovered two structurally distinct D1 receptor PAMs, MLS6585 and MLS1082, via a high-throughput screen of the NIH Molecular Libraries program small-molecule library. Both compounds potentiate dopamine-stimulated G protein- and β-arrestin-mediated signaling and increase the affinity of dopamine for the D1 receptor with low micromolar potencies. Neither compound displayed any intrinsic agonist activity. Both compounds were also found to potentiate the efficacy of partial agonists. We tested maximally effective concentrations of each PAM in combination to determine if the compounds might act at separate or similar sites. In combination, MLS1082 + MLS6585 produced an additive potentiation of dopamine potency beyond that caused by either PAM alone for both β-arrestin recruitment and cAMP accumulation, suggesting diverse sites of action. In addition, MLS6585, but not MLS1082, had additive activity with the previously described D1 receptor PAM “Compound B,” suggesting that MLS1082 and Compound B may share a common binding site. A point mutation (R130Q) in the D1 receptor was found to abrogate MLS1082 activity without affecting that of MLS6585, suggesting this residue may be involved in the binding/activity of MLS1082 but not that of MLS6585. Together, MLS1082 and MLS6585 may serve as important tool compounds for the characterization of diverse allosteric sites on the D1 receptor as well as the development of optimized lead compounds for therapeutic use.
The FASEB Journal | 2016
Kathryn D. Luderman; Jennie Conroy; R. Benjamin Free; Noel Southall; Marc Ferrer; Jeffrey Aubé; Kevin J. Frankowski; David R. Sibley
Archive | 2013
Jingbo Xiao; R. Benjamin Free; Elena Barnaeva; Jennie Conroy; Trevor Doyle; Marthe Bryant-Genevier; Mercedes K. Taylor; Noel Southall; Xin Hu; Marc Ferrer; Steve Titus; Wei Zheng; David R. Sibley; Juan J. Marugan
The FASEB Journal | 2012
Rebecca A. Roof; Jack Bergman; Chersyse A. Furman; Jennie Conroy; Nancy K. Mello; Phil Skolnick; David R. Sibley