Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer A. Calvo is active.

Publication


Featured researches published by Jennifer A. Calvo.


Journal of Clinical Investigation | 2012

DNA repair is indispensable for survival after acute inflammation

Jennifer A. Calvo; Lisiane B. Meira; Chun-Yue I. Lee; Catherine A. Moroski-Erkul; Nona Abolhassani; Koli Taghizadeh; Lindsey Wood Eichinger; Sureshkumar Muthupalani; Line M. Nordstrand; Arne Klungland; Leona D. Samson

More than 15% of cancer deaths worldwide are associated with underlying infections or inflammatory conditions, therefore understanding how inflammation contributes to cancer etiology is important for both cancer prevention and treatment. Inflamed tissues are known to harbor elevated etheno-base (ε-base) DNA lesions induced by the lipid peroxidation that is stimulated by reactive oxygen and nitrogen species (RONS) released from activated neutrophils and macrophages. Inflammation contributes to carcinogenesis in part via RONS-induced cytotoxic and mutagenic DNA lesions, including ε-base lesions. The mouse alkyl adenine DNA glycosylase (AAG, also known as MPG) recognizes such base lesions, thus protecting against inflammation-associated colon cancer. Two other DNA repair enzymes are known to repair ε-base lesions, namely ALKBH2 and ALKBH3; thus, we sought to determine whether these DNA dioxygenase enzymes could protect against chronic inflammation-mediated colon carcinogenesis. Using established chemically induced colitis and colon cancer models in mice, we show here that ALKBH2 and ALKBH3 provide cancer protection similar to that of the DNA glycosylase AAG. Moreover, Alkbh2 and Alkbh3 each display apparent epistasis with Aag. Surprisingly, deficiency in all 3 DNA repair enzymes confers a massively synergistic phenotype, such that animals lacking all 3 DNA repair enzymes cannot survive even a single bout of chemically induced colitis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Aag-initiated base excision repair drives alkylation-induced retinal degeneration in mice

Lisiane B. Meira; Catherine A. Moroski-Erkul; Stephanie L. Green; Jennifer A. Calvo; Roderick T. Bronson; Dharini Shah; Leona D. Samson

Vision loss affects >3 million Americans and many more people worldwide. Although predisposing genes have been identified their link to known environmental factors is unclear. In wild-type animals DNA alkylating agents induce photoreceptor apoptosis and severe retinal degeneration. Alkylation-induced retinal degeneration is totally suppressed in the absence of the DNA repair protein alkyladenine DNA glycosylase (Aag) in both differentiating and postmitotic retinas. Moreover, transgenic expression of Aag activity restores the alkylation sensitivity of photoreceptors in Aag null animals. Aag heterozygotes display an intermediate level of retinal degeneration, demonstrating haploinsufficiency and underscoring that Aag expression confers a dominant retinal degeneration phenotype.


Proceedings of the National Academy of Sciences of the United States of America | 2009

O6-methylguanine-induced cell death involves exonuclease 1 as well as DNA mismatch recognition in vivo

Joanna Klapacz; Lisiane B. Meira; David Luchetti; Jennifer A. Calvo; Roderick T. Bronson; Winfried Edelmann; Leona D. Samson

Alkylation-induced O6-methylguanine (O6MeG) DNA lesions can be mutagenic or cytotoxic if unrepaired by the O6MeG-DNA methyltransferase (Mgmt) protein. O6MeG pairs with T during DNA replication, and if the O6MeG:T mismatch persists, a G:C to A:T transition mutation is fixed at the next replication cycle. O6MeG:T mismatch detection by MutSα and MutLα leads to apoptotic cell death, but the mechanism by which this occurs has been elusive. To explore how mismatch repair mediates O6MeG-dependent apoptosis, we used an Mgmt-null mouse model combined with either the Msh6-null mutant (defective in mismatch recognition) or the Exo1-null mutant (impaired in the excision step of mismatch repair). Mouse embryonic fibroblasts and bone marrow cells derived from Mgmt-null mice were much more alkylation-sensitive than wild type, as expected. However, ablation of either Msh6 or Exo1 function rendered these Mgmt-null cells just as resistant to alkylation-induced cytotoxicity as wild-type cells. Rapidly proliferating tissues in Mgmt-null mice (bone marrow, thymus, and spleen) are extremely sensitive to apoptosis induced by O6MeG-producing agents. Here, we show that ablation of either Msh6 or Exo1 function in the Mgmt-null mouse renders these rapidly proliferating tissues alkylation-resistant. However, whereas the Msh6 defect confers total alkylation resistance, the Exo1 defect leads to a variable tissue-specific alkylation resistance phenotype. Our results indicate that Exo1 plays an important role in the induction of apoptosis by unrepaired O6MeGs.


PLOS Genetics | 2013

Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

Jennifer A. Calvo; Catherine A. Moroski-Erkul; Annabelle Lake; Lindsey Wood Eichinger; Dharini Shah; Iny Jhun; Prajit Limsirichai; Roderick T. Bronson; David C. Christiani; Lisiane B. Meira; Leona D. Samson

Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag −/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney

Mohammad Reza Ebrahimkhani; Ali Daneshmand; Aprotim Mazumder; Mariacarmela Allocca; Jennifer A. Calvo; Nona Abolhassani; Iny Jhun; Sureshkumar Muthupalani; Cenk Ayata; Leona D. Samson

Significance Ischemia reperfusion (I/R)-induced tissue injury and inflammation encompasses a wide range of human disease, including stroke, hepatic and renal failure, and myocardial infarction. Generation of highly reactive oxygen and nitrogen species during I/R results in DNA damage that is subject to numerous DNA repair processes. Base excision repair (BER) initiated by various DNA glycosylases is critical for the repair of reactive oxygen and nitrogen species (RONS)-induced DNA damage. Our data describe a new paradigm wherein the Aag BER DNA glycosylase enzyme promotes, rather than prevents, tissue injury and inflammation in liver, brain, and kidney following I/R. This finding reveals a detrimental facet of DNA repair during inflammation and presents a novel target for controlling I/R-induced injury. Inflammation is accompanied by the release of highly reactive oxygen and nitrogen species (RONS) that damage DNA, among other cellular molecules. Base excision repair (BER) is initiated by DNA glycosylases and is crucial in repairing RONS-induced DNA damage; the alkyladenine DNA glycosylase (Aag/Mpg) excises several DNA base lesions induced by the inflammation-associated RONS release that accompanies ischemia reperfusion (I/R). Using mouse I/R models we demonstrate that Aag−/− mice are significantly protected against, rather than sensitized to, I/R injury, and that such protection is observed across three different organs. Following I/R in liver, kidney, and brain, Aag−/− mice display decreased hepatocyte death, cerebral infarction, and renal injury relative to wild-type. We infer that in wild-type mice, Aag excises damaged DNA bases to generate potentially toxic abasic sites that in turn generate highly toxic DNA strand breaks that trigger poly(ADP-ribose) polymerase (Parp) hyperactivation, cellular bioenergetics failure, and necrosis; indeed, steady-state levels of abasic sites and nuclear PAR polymers were significantly more elevated in wild-type vs. Aag−/− liver after I/R. This increase in PAR polymers was accompanied by depletion of intracellular NAD and ATP levels plus the translocation and extracellular release of the high-mobility group box 1 (Hmgb1) nuclear protein, activating the sterile inflammatory response. We thus demonstrate the detrimental effects of Aag-initiated BER during I/R and sterile inflammation, and present a novel target for controlling I/R-induced injury.


DNA Repair | 2014

Repair of endogenous DNA base lesions modulate lifespan in mice.

Lisiane B. Meira; Jennifer A. Calvo; Dharini Shah; Joanna Klapacz; Catherine A. Moroski-Erkul; Roderick T. Bronson; Leona D. Samson

The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O(6)-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm(-/-) mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.


Oncotarget | 2016

Parp1 protects against Aag-dependent alkylation-induced nephrotoxicity in a sex-dependent manner

Jennifer A. Calvo; Mariacarmela Allocca; Kimberly R. Fake; Sureshkumar Muthupalani; Joshua J. Corrigan; Roderick T. Bronson; Leona D. Samson

Nephrotoxicity is a common toxic side-effect of chemotherapeutic alkylating agents. Although the base excision repair (BER) pathway is essential in repairing DNA alkylation damage, under certain conditions the initiation of BER produces toxic repair intermediates that damage healthy tissues. We have shown that the alkyladenine DNA glycosylase, Aag (a.k.a. Mpg), an enzyme that initiates BER, mediates alkylation-induced whole-animal lethality and cytotoxicity in the pancreas, spleen, retina, and cerebellum, but not in the kidney. Cytotoxicity in both wild-type and Aag-transgenic mice (AagTg) was abrogated in the absence of Poly(ADP-ribose) polymerase-1 (Parp1). Here we report that Parp1-deficient mice expressing increased Aag (AagTg/Parp1−/−) develop sex-dependent kidney failure upon exposure to the alkylating agent, methyl methanesulfonate (MMS), and suffer increased whole-animal lethality compared to AagTg and wild-type mice. Macroscopic, histological, electron microscopic and immunohistochemical analyses revealed morphological kidney damage including dilated tubules, proteinaceous casts, vacuolation, collapse of the glomerular tuft, and deterioration of podocyte structure. Moreover, mice exhibited clinical signs of kidney disease indicating functional damage, including elevated blood nitrogen urea and creatinine, hypoproteinemia and proteinuria. Pharmacological Parp inhibition in AagTg mice also resulted in sensitivity to MMS-induced nephrotoxicity. These findings provide in vivo evidence that Parp1 modulates Aag-dependent MMS-induced nephrotoxicity in a sex-dependent manner and highlight the critical roles that Aag-initiated BER and Parp1 may play in determining the side-effects of chemotherapeutic alkylating agents.


Oncotarget | 2016

The Mbd4 DNA glycosylase protects mice from inflammation-driven colon cancer and tissue injury.

Amy Marie Yu; Jennifer A. Calvo; Suresh Muthupalani; Leona D. Samson

Much of the global cancer burden is associated with longstanding inflammation accompanied by release of DNA-damaging reactive oxygen and nitrogen species. Here, we report that the Mbd4 DNA glycosylase is protective in the azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model of inflammation-driven colon cancer. Mbd4 excises T and U from T:G and U:G mismatches caused by deamination of 5-methylcytosine and cytosine. Since the rate of deamination is higher in inflamed tissues, we investigated the role of Mbd4 in inflammation-driven tumorigenesis. In the AOM/DSS assay, Mbd4−/− mice displayed more severe clinical symptoms, decreased survival, and a greater tumor burden than wild-type (WT) controls. The increased tumor burden in Mbd4−/− mice did not arise from impairment of AOM-induced apoptosis in the intestinal crypt. Histopathological analysis indicated that the colonic epithelium of Mbd4−/− mice is more vulnerable than WT to DSS-induced tissue damage. We investigated the role of the Mbd4−/− immune system in AOM/DSS-mediated carcinogenesis by repeating the assay on WT and Mbd4−/− mice transplanted with WT bone marrow. Mbd4−/− mice with WT bone marrow behaved similarly to Mbd4−/− mice. Together, our results indicate that the colonic epithelium of Mbd4−/− mice is more vulnerable to DSS-induced injury, which exacerbates inflammation-driven tissue injury and cancer.


Oncotarget | 2017

PARP inhibitors protect against sex- and AAG-dependent alkylation-induced neural degeneration

Mariacarmela Allocca; Joshua J. Corrigan; Kimberly R. Fake; Jennifer A. Calvo; Leona D. Samson

Alkylating agents are commonly used to treat cancer. Although base excision repair (BER) is a major pathway for repairing DNA alkylation damage, under certain conditions, the initiation of BER produces toxic repair intermediates that damage healthy tissues. The initiation of BER by the alkyladenine DNA glycosylase (AAG, a.k.a. MPG) can mediate alkylation-induced cytotoxicity in specific cells in the retina and cerebellum of male mice. Cytotoxicity in both wild-type and Aag-transgenic (AagTg) mice is abrogated in the absence of Poly(ADP-ribose) polymerase-1 (PARP1). Here, we tested whether PARP inhibitors can also prevent alkylation-induced retinal and cerebellar degeneration in male and female WT and AagTg mice. Importantly, we found that WT mice display sex-dependent alkylation-induced retinal damage (but not cerebellar damage), with WT males being more sensitive than females. Accordingly, estradiol treatment protects males against alkylation-induced retinal degeneration. In AagTg male and female mice, the alkylation-induced tissue damage in both the retina and cerebellum is exacerbated and the sex difference in the retina is abolished. PARP inhibitors, much like Parp1 gene deletion, protect against alkylation-induced AAG-dependent neuronal degeneration in WT and AagTg mice, regardless of the gender, but their efficacy in preventing alkylation-induced neuronal degeneration depends on PARP inhibitor characteristics and doses. The recent surge in the use of PARP inhibitors in combination with cancer chemotherapeutic alkylating agents might represent a powerful tool for obtaining increased therapeutic efficacy while avoiding the collateral effects of alkylating agents in healthy tissues.


PMC | 2014

Repair of endogenous DNA base lesions modulate lifespan in mice

Lisiane B. Meira; Jennifer A. Calvo; Dharini Shah; Joanna Klapacz; Catherine A. Moroski-Erkul; Roderick T. Bronson; Leona D. Samson

Collaboration


Dive into the Jennifer A. Calvo's collaboration.

Top Co-Authors

Avatar

Leona D. Samson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine A. Moroski-Erkul

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dharini Shah

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sureshkumar Muthupalani

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joanna Klapacz

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mariacarmela Allocca

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koli Taghizadeh

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge