Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer A. Pietenpol is active.

Publication


Featured researches published by Jennifer A. Pietenpol.


Cell | 1990

TGF-β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains

Jennifer A. Pietenpol; Roland Stein; Elizabeth Moran; Peter Yaciuk; Richard Schlegel; Russette M. Lyons; Mark R. Pittelkow; Karl Münger; Peter M. Howley; Harold L. Moses

TGF-beta 1 is demonstrated to inhibit skin keratinocyte proliferation when added during the G1 phase of the cell cycle. Human foreskin keratinocytes transformed with either HPV-16 or -18 or SV40, however, were resistant to the growth inhibitory effects of TGF-beta 1. Since TGF-beta 1 appears to inhibit keratinocyte growth through down-regulation of c-myc, it was hypothesized that these DNA tumor viruses might be modulating the response to TGF-beta 1 via this pathway. Transient expression of proteins HPV-16 E7, adenovirus type 5 E1A, and SV40 large T antigen is demonstrated to block TGF-beta 1 suppression of c-myc transcription. This effect was not observed with DNA tumor virus transforming proteins mutated in their pRB binding domain. These observations indicate that pRB or another protein that interacts with this binding domain mediates TGF-beta 1 regulation of c-myc gene expression and growth inhibition.


Toxicology | 2002

Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis.

Jennifer A. Pietenpol; Zoe A. Stewart

Although toxicants may initiate cell damage or stress, the cellular proteins that are involved in control of cell cycle and apoptosis are the final arbiters of cell fate. The biochemical pathways that restrain cell cycle transition and/or induce cell death after stress are known as cell cycle checkpoints. These checkpoints maintain the fidelity of DNA replication, repair, and division. Herein, select cell cycle checkpoint signaling pathways will be discussed and how different components of these pathways are regulated by exogenous and endogenous agents, with focus on the p53 tumor suppressor signaling. The p53 protein is known to play a key role in growth arrest and apoptosis after cell stress, primarily through its ability to regulate the transcription of select downstream target genes in the cell. Further elucidation of the signaling pathways that control growth arrest and apoptosis will continue to provide insights to the complex cellular responses to environmental toxicants.


Molecular and Cellular Biology | 2003

The ΔNp63α phosphoprotein binds the p21 and 14-3-3σ promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations

Matthew D. Westfall; Deborah J. Mays; Joseph C. Sniezek; Jennifer A. Pietenpol

ABSTRACT p63 is a recently identified homolog of p53 that is found in the basal layer of several stratified epithelial tissues such as the epidermis, oral mucosa, prostate, and urogenital tract. Studies with p63−/− mice and analysis of several human autosomal-dominant disorders with germ line p63 mutations suggest p63 involvement in maintaining epidermal stem cell populations. The p63 gene encodes six splice variants with reported transactivating or dominant-negative activities. The goals of the current study were to determine the splice variants that are expressed in primary human epidermal keratinocytes (HEKs) and the biochemical activity p63 has in these epithelial cell populations. We found that the predominant splice variant expressed in HEKs was ΔNp63α, and it was present as a phosphorylated protein. During HEK differentiation, ΔNp63α and p53 levels decreased, while expression of p53 target genes p21 and 14-3-3σ increased. ΔNp63α had transcriptional repressor activity in vitro, and this activity was reduced in ΔNp63α proteins containing point mutations, corresponding to those found in patients with Hay-Wells syndrome. Further, we show that ΔNp63α and p53 can bind the p21 and 14-3-3σ promoters in vitro and in vivo, with decreased binding of p63 to these promoters during HEK differentiation. These data suggest that ΔNp63α acts as a transcriptional repressor at select growth regulatory gene promoters in HEKs, and this repression likely plays an important role in the proliferative capacity of basal keratinocytes.


Journal of Cellular Biochemistry | 2007

A tale of two proteins: Differential roles and regulation of Smad2 and Smad3 in TGF-β signaling

Kimberly A. Brown; Jennifer A. Pietenpol; Harold L. Moses

Transforming growth factor‐beta (TGF‐β) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF‐β signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF‐β target genes, suggest that Smad2 and Smad3 have distinct roles in TGF‐β signaling. The observation that TGF‐β inhibits proliferation of Smad3‐null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3‐mediated TGF‐β signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF‐β signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF‐β signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF‐β response may translate into developing more effective strategies for cancer therapy. J. Cell. Biochem. 101: 9–33, 2007.


Clinical Cancer Research | 2013

Differential Response to Neoadjuvant Chemotherapy Among 7 Triple-Negative Breast Cancer Molecular Subtypes

Hiroko Masuda; Keith A. Baggerly; Ying Wang; Ya Zhang; Ana M. Gonzalez-Angulo; Funda Meric-Bernstam; Vicente Valero; Brian D. Lehmann; Jennifer A. Pietenpol; Gabriel N. Hortobagyi; W. Fraser Symmans; Naoto Ueno

Purpose: The clinical relevancy of the 7-subtype classification of triple-negative breast cancer (TNBC) reported by Lehmann and colleagues is unknown. We investigated the clinical relevancy of TNBC heterogeneity by determining pathologic complete response (pCR) rates after neoadjuvant chemotherapy, based on TNBC subtypes. Experimental Design: We revalidated the Lehmann and colleagues experiments using Affymetrix CEL files from public datasets. We applied these methods to 146 patients with TNBC with gene expression microarrays obtained from June 2000 to March 2010 at our institution. Of those, 130 had received standard neoadjuvant chemotherapy and had evaluable pathologic response data. We classified the TNBC samples by subtype and then correlated subtype and pCR status using Fisher exact test and a logistic regression model. We also assessed survival and compared the subtypes with PAM50 intrinsic subtypes and residual cancer burden (RCB) index. Results: TNBC subtype and pCR status were significantly associated (P = 0.04379). The basal-like 1 (BL1) subtype had the highest pCR rate (52%); basal-like 2 (BL2) and luminal androgen receptor had the lowest (0% and 10%, respectively). TNBC subtype was an independent predictor of pCR status (P = 0.022) by a likelihood ratio test. The subtypes better predicted pCR status than did the PAM50 intrinsic subtypes (basal-like vs. non basal-like). Conclusions: Classifying TNBC by 7 subtypes predicts high versus low pCR rate. We confirm the clinical relevancy of the 7 subtypes of TNBC. We need to prospectively validate whether the pCR rate differences translate into long-term outcome differences. The 7-subtype classification may spur innovative personalized medicine strategies for patients with TNBC. Clin Cancer Res; 19(19); 5533–40. ©2013 AACR.


Journal of Biological Chemistry | 1998

Mitotic Phosphorylation of Bcl-2 during Normal Cell Cycle Progression and Taxol-induced Growth Arrest

Caroline D. Scatena; Zoe A. Stewart; Deborah J. Mays; Luo Jia Tang; Christopher J. Keefer; Steven D. Leach; Jennifer A. Pietenpol

There is increasing evidence that prolonged mitotic arrest initiates apoptosis; however, little is known about the signaling pathways involved. Several studies have associated deregulated Cdc2 activity with apoptosis. Herein, we report that the anti-apoptotic protein, Bcl-2, undergoes cell cycle-dependent phosphorylation during mitosis when there is elevated Cdc2 activity. We found that paclitaxel (Taxol®) treatment of epithelial tumor cells induced a prolonged mitotic arrest, elevated levels of mitotic kinase activity, hyperphosphorylation of Bcl-2, and subsequent cell death. The Taxol-induced Bcl-2 phosphorylation was dose-dependent. Furthermore, phosphorylated Bcl-2 remained complexed with Bax in Taxol-treated cells undergoing apoptosis. Immunoprecipitation experiments revealed a Bcl-2-associated kinase capable of phosphorylating histone H1 in vitro. However, the kinase was likely not cyclin B1/Cdc2, since cyclin B1/Cdc2 was not detectable in Bcl-2 immunoprecipitates, nor was recombinant Bcl-2 phosphorylatedin vitro by cyclin B1/Cdc2. The results of this study further define a link between mitotic kinase activation and the apoptotic machinery in the cell. However, the role, if any, of prolonged Bcl-2 phosphorylation in Taxol-mediated apoptosis awaits further definition of Bcl-2 mechanism of action. Taxol may increase cellular susceptibility to apoptosis by amplifying the normal downstream events associated with mitotic kinase activation.


Trends in Pharmacological Sciences | 2003

Cell-cycle dysregulation and anticancer therapy

Zoe A. Stewart; Matthew D. Westfall; Jennifer A. Pietenpol

Cell-cycle dysregulation is a hallmark of tumor cells. The ability of normal cells to undergo cell-cycle arrest after damage to DNA is crucial for the maintenance of genomic integrity. The biochemical pathways that stop the cell cycle in response to cellular stressors are called checkpoints. Defective checkpoint function results in genetic modifications that contribute to tumorigenesis. The regulation of checkpoint signaling also has important clinical implications because the abrogation of checkpoint function can alter the sensitivity of tumor cells to chemotherapeutics. Here, we provide an overview of the mechanisms that regulate the cell cycle, current anticancer therapies that target checkpoint signaling pathways, and strategies for the development of novel chemotherapeutic agents.


Cancer Research | 2006

Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis.

Christopher E. Barbieri; Luo Jia Tang; Kimberly A. Brown; Jennifer A. Pietenpol

p63, a homologue of the tumor suppressor p53, is critical for the development and maintenance of squamous epithelia. p63 is specifically expressed in the basal layers of stratified epithelial tissues and is considered a specific marker for cells of this type. The role of p63 in tumorigenesis remains poorly defined. Numerous studies have highlighted the oncogenic potential of the predominant p63 isoform DeltaNp63alpha; however, data suggest that other p63 proteins can act as tumor suppressors or alter the metastatic potential of tumors. DeltaNp63alpha can act as a transcriptional repressor, but the link between the transcriptional functions of p63 and its biological role is still unclear. In this study, we used a loss-of-function approach to investigate the transcriptional programs controlled by p63. Disruption of p63 in squamous cell lines resulted in down-regulation of transcripts specifically expressed in squamous tissues and a significant alteration of keratinocyte differentiation. Interestingly, we found that disruption of p63 led to up-regulation of markers of nonepithelial tissues (mesenchyme and neural tissue) in both primary and immortalized squamous cells. Many of these up-regulated genes are associated with increased capacity for invasion and metastasis in tumors. Furthermore, loss of p63 expression was accompanied by a shift toward mesenchymal morphology and an increase in motility in primary keratinocytes and squamous cell lines. We conclude that loss of endogenous p63 expression results in up-regulation of genes associated with invasion and metastasis, and predisposes to a loss of epithelial and acquisition of mesenchymal characteristics. These findings have implications for the role of p63 in both development and tumorigenesis.


Molecular and Cellular Biology | 1999

p21Waf1/Cip1 Inhibition of Cyclin E/Cdk2 Activity Prevents Endoreduplication after Mitotic Spindle Disruption

Zoe A. Stewart; Steven D. Leach; Jennifer A. Pietenpol

ABSTRACT During a normal cell cycle, entry into S phase is dependent on completion of mitosis and subsequent activation of cyclin-dependent kinases (Cdks) in G1. These events are monitored by checkpoint pathways. Recent studies and data presented herein show that after treatment with microtubule inhibitors (MTIs), cells deficient in the Cdk inhibitor p21Waf1/Cip1 enter S phase with a ≥4N DNA content, a process known as endoreduplication, which results in polyploidy. To determine how p21 prevents MTI-induced endoreduplication, the G1/S and G2/M checkpoint pathways were examined in two isogenic cell systems: HCT116 p21+/+ and p21−/− cells and H1299 cells containing an inducible p21 expression vector (HIp21). Both HCT116 p21−/− cells and noninduced HIp21 cells endoreduplicated after MTI treatment. Analysis of G1-phase Cdk activities demonstrated that the induction of p21 inhibited endoreduplication through direct cyclin E/Cdk2 regulation. The kinetics of p21 inhibition of cyclin E/Cdk2 activity and binding to proliferating-cell nuclear antigen in HCT116 p21+/+ cells paralleled the onset of endoreduplication in HCT116 p21−/− cells. In contrast, loss of p21 did not lead to deregulated cyclin D1-dependent kinase activities, nor did p21 directly regulate cyclin B1/Cdc2 activity. Furthermore, we show that MTI-induced endoreduplication in p53-deficient HIp21 cells was due to levels of p21 protein below a threshold required for negative regulation of cyclin E/Cdk2, since ectopic expression of p21 restored cyclin E/Cdk2 regulation and prevented endoreduplication. Based on these findings, we propose that p21 plays an integral role in the checkpoint pathways that restrain normal cells from entering S phase after aberrant mitotic exit due to defects in microtubule dynamics.


Molecular and Cellular Biology | 2001

Kinetics of p53 Binding to Promoter Sites In Vivo

Suzanne T. Szak; Deborah J. Mays; Jennifer A. Pietenpol

ABSTRACT Downstream target genes of p53 are thought to mediate its tumor-suppressive activity, but it is unknown whether differential transactivation of these genes is regulated at the level of p53 binding to their promoters. To address this issue, p53 binding in vivo to consensus sites in the p21Waf1, MDM2, and PIG3 promoters was investigated in cells exposed to adriamycin (ADR) or ionizing radiation as well as in an inducible p53 cell line. p53-DNA complexes were cross-linked in vivo by treating the cells with formaldehyde and processed by chromatin immunoprecipitation-PCR. This methodology allowed for the analysis of relevant p53-DNA complexes by preventing redistribution of cellular components upon collection of cell extracts. Increased p53 binding to the p21Waf1, MDM2, and PIG3 promoters occurred within 2 h after p53 activation; however, significant increases in PIG3 transcription did not occur until 15 h after p53 binding. Gel shift analyses indicated that p53 had lower affinity for the consensus binding site in the PIG3 promoters compared to its consensus sites in the p21 and MDM2 genes, which suggests that additional factors may be required to stabilize the interaction of p53 with the PIG3 promoter. Further, acetylated p53 (Lys382) was found in chemically cross-linked complexes at all promoter sites examined after treatment of cells with ADR. In summary, the kinetics of p53 binding in vivo to target gene regulatory regions does not uniformly correlate with target gene mRNA expression for the p53 target genes examined. Our results suggest that target genes with low-affinity p53 binding sites may require additional events and will have delayed kinetics of induction compared to those with high-affinity binding sites.

Collaboration


Dive into the Jennifer A. Pietenpol's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Shyr

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melinda E. Sanders

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge