Jennifer Baldwin
Broad Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jennifer Baldwin.
Nature | 2008
Li Ding; Gad Getz; David A. Wheeler; Elaine R. Mardis; Michael D. McLellan; Kristian Cibulskis; Carrie Sougnez; Heidi Greulich; Donna M. Muzny; Margaret Morgan; Lucinda Fulton; Robert S. Fulton; Qunyuan Zhang; Michael C. Wendl; Michael S. Lawrence; David E. Larson; Ken Chen; David J. Dooling; Aniko Sabo; Alicia Hawes; Hua Shen; Shalini N. Jhangiani; Lora Lewis; Otis Hall; Yiming Zhu; Tittu Mathew; Yanru Ren; Jiqiang Yao; Steven E. Scherer; Kerstin Clerc
Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.
Nature | 2011
Michael F. Berger; Michael S. Lawrence; Francesca Demichelis; Yotam Drier; Kristian Cibulskis; Andrey Sivachenko; Andrea Sboner; Raquel Esgueva; Dorothee Pflueger; Carrie Sougnez; Robert C. Onofrio; Scott L. Carter; Kyung Park; Lukas Habegger; Lauren Ambrogio; Timothy Fennell; Melissa Parkin; Gordon Saksena; Douglas Voet; Alex H. Ramos; Trevor J. Pugh; Jane Wilkinson; Sheila Fisher; Wendy Winckler; Scott Mahan; Kristin Ardlie; Jennifer Baldwin; Jonathan W. Simons; Naoki Kitabayashi; Theresa Y. MacDonald
Prostate cancer is the second most common cause of male cancer deaths in the United States. However, the full range of prostate cancer genomic alterations is incompletely characterized. Here we present the complete sequence of seven primary human prostate cancers and their paired normal counterparts. Several tumours contained complex chains of balanced (that is, ‘copy-neutral’) rearrangements that occurred within or adjacent to known cancer genes. Rearrangement breakpoints were enriched near open chromatin, androgen receptor and ERG DNA binding sites in the setting of the ETS gene fusion TMPRSS2–ERG, but inversely correlated with these regions in tumours lacking ETS fusions. This observation suggests a link between chromatin or transcriptional regulation and the genesis of genomic aberrations. Three tumours contained rearrangements that disrupted CADM2, and four harboured events disrupting either PTEN (unbalanced events), a prostate tumour suppressor, or MAGI2 (balanced events), a PTEN interacting protein not previously implicated in prostate tumorigenesis. Thus, genomic rearrangements may arise from transcriptional or chromatin aberrancies and engage prostate tumorigenic mechanisms.
Nature | 2012
Michael F. Berger; Eran Hodis; Timothy P. Heffernan; Yonathan Lissanu Deribe; Michael S. Lawrence; Alexei Protopopov; Elena S Ivanova; Ian R. Watson; Elizabeth Nickerson; Papia Ghosh; Hailei Zhang; Rhamy Zeid; Xiaojia Ren; Kristian Cibulskis; Andrey Sivachenko; Nikhil Wagle; Antje Sucker; Carrie Sougnez; Robert C. Onofrio; Lauren Ambrogio; Daniel Auclair; Timothy Fennell; Scott L. Carter; Yotam Drier; Petar Stojanov; Meredith A. Singer; Douglas Voet; Rui Jing; Gordon Saksena; Jordi Barretina
Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5–55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)—a PTEN-interacting protein and negative regulator of PTEN in breast cancer—as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.
Cancer Research | 2011
Michael F. Berger; Michael S. Lawrence; Francesca Demichelis; Yotam Drier; Kristian Cibulskis; Andrey Sivachenko; Andrea Sboner; Raquel Esgueva; Dorothee Pflueger; Carrie Sougnez; Robert C. Onofrio; Scott L. Carter; Kyung Park; Lukas Habegger; Lauren Ambrogio; Timothy Fennell; Melissa Parkin; Gordon Saksena; Douglas Voet; Alex H. Ramos; Trevor J. Pugh; Jane Wilkinson; Sheila Fisher; Wendy Winckler; Scott Mahan; Kristin Ardlie; Jennifer Baldwin; Jonathan W. Simons; Naoki Kitabayashi; Theresa Y. MacDonald
Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL Prostate cancer is the second most common cause of male cancer deaths in the United States, accounting for 200,000 new cases and 32,000 deaths per year. Chromosomal rearrangements comprise a major mechanism driving prostate carcinogenesis. For example, recurrent gene fusions that render ETS transcription factors under the control of androgen-responsive promoters are present in the majority of prostate cancers. Other types of somatic alterations, such as base substitutions, small insertions/deletions, and chromosomal copy number alterations, have also been described, yet the full repertoire of genomic alterations that underlie primary human prostate cancer remains incompletely characterized. We present here the most comprehensive genome sequencing effort in prostate cancer reported to date. We have characterized the complete genomes of 7 primary prostate cancers and patient-matched normal samples using massively parallel sequencing technology. We observed a mean mutation frequency of 0.9 per megabase, consistent with what has been reported for other tumor types. However, our results indicate that translocations and other chromosomal rearrangements are far more common than expected, with a median of 90 per prostate cancer genome. Several tumors contained chains of balanced rearrangements involving multiple loci associated with known cancer genes. We observed a striking and unexpected relationship between rearrangement breakpoints and chromatin structure, which differed for tumors harboring the ETS gene fusion TMPRSS2-ERG and tumors lacking ETS fusions. We also observed an enrichment of point mutations near rearrangement breakpoints. Three of seven tumors contained rearrangements that disrupted CADM2, a nectin-like member of the immunoglobulin-like cell adhesion molecules; recurrent CADM2 rearrangements were also detected in an independent cohort by fluorescent in situ hybridization (FISH). Four tumors harbored rearrangements disrupting either PTEN, a prostate tumor suppressor, or MAGI2, a PTEN interacting protein not previously implicated in prostate cancer. Together, these results illuminate potential avenues for target discovery and reveal the potential of complex rearrangements to engage prostate tumorigenic mechanisms. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 3925. doi:10.1158/1538-7445.AM2011-3925
Cancer Research | 2010
Michael F. Berger; Michael S. Lawrence; Kristian Cibulskis; Dorothee Pflueger; Francesca Demichelis; Carrie Sougnez; Robert C. Onofrio; Lauren Ambrogio; Timothy Fennell; Melissa Parkin; Scott L. Carter; Gordon Saksena; Andrey Sivachenko; Douglas Voet; Jane Wilkinson; Sheila Fisher; Wendy Winckler; Kristin Ardlie; John Chant; Jennifer Baldwin; Mark Gerstein; Todd R. Golub; Matthew Meyerson; Ashutosh Tewari; Stacey Gabriel; Eric S. Lander; Gad Getz; Mark A. Rubin; Levi A. Garraway
Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC Prostate cancer is the most common type of cancer diagnosed among men in the United States, accounting for 200,000 new cases and 27,000 deaths per year. Prior genetic studies have shown that chromosomal rearrangements comprise a major mechanism of oncogene activation in prostate cancer. For example, androgen-regulated gene fusions involving ETS family transcription factors are present in the majority of prostate cancers, yet the full repertoire of genomic alterations driving prostate carcinogenesis and progression remains unknown. Toward this end, recent technological advances have made it possible to characterize the full complement of somatic mutations in a single tumor through whole genome sequencing. We are using massively parallel sequencing technology to characterize the complete genomes of several primary prostate adenocarcinomas at >30x coverage. All samples are high-grade primary tumors (Gleason grade 7 to 9) and include cases with and without known ETS family translocations. For each tumor, we are also obtaining >30x sequence coverage of matched normal DNA from blood of these same patients in order to determine the somatic component of the overall variation we observe. Our results indicate that translocations and other chromosomal rearrangements occur frequently in prostate cancer, at a rate of >100 per genome. Further, we have discovered many nonsynonymous sequence mutations (point mutations and indels) in each tumor, some of which may represent novel candidate drivers of tumor progression. The overall rate of somatic point mutations is approximately 1 per Megabase. Integrated analysis of all genomes reveals both recurrent and private alterations. Together, these results illuminate potential avenues for target discovery and demonstrate the unparalleled value in performing complete genome sequencing in this malignancy. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 1139.
Nature | 2000
David Altshuler; Victor J. Pollara; Chris R. Cowles; William J. Van Etten; Jennifer Baldwin; Lauren Linton; Eric S. Lander
The Journal of Urology | 2012
Christopher E. Barbieri; Sylvan C. Baca; Francesca Demichelis; Michael S. Lawrence; Mija Blattner; Jean-Philippe Theurillat; Gunther Boysen; Petar Stojanov; Eli Van Allen; Nico Stransky; Elizabeth Nickerson; Kyung Kgi Park; Naoki Kitabayashi; Theresa Y. MacDonald; Terry Vuong; Daniel Auclair; Robert C. Onofrio; Candace Guiducci; Kristian Cibulskis; Andrey Sivachenko; Scott L. Carter; Lauren Ambrogio; Melissa Parkin; Thomas J. White; Gordon Saksena; Douglas Voet; Alex H. Ramos; Wendy Winckler; Wasay M. Hussain; Jane Wilkinson