Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jennifer V. Kuehl is active.

Publication


Featured researches published by Jennifer V. Kuehl.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns

Robert K. Jansen; Zhengqiu Cai; Linda A. Raubeson; Henry Daniell; W Claude; Jim Leebens-Mack; Mary Guisinger-Bellian; Rosemarie C. Haberle; Anne Hansen; Timothy W. Chumley; Seung-Bum Lee; Rhiannon Peery; Joel R. McNeal; Jennifer V. Kuehl; Jeffrey L. Boore

Angiosperms are the largest and most successful clade of land plants with >250,000 species distributed in nearly every terrestrial habitat. Many phylogenetic studies have been based on DNA sequences of one to several genes, but, despite decades of intensive efforts, relationships among early diverging lineages and several of the major clades remain either incompletely resolved or weakly supported. We performed phylogenetic analyses of 81 plastid genes in 64 sequenced genomes, including 13 new genomes, to estimate relationships among the major angiosperm clades, and the resulting trees are used to examine the evolution of gene and intron content. Phylogenetic trees from multiple methods, including model-based approaches, provide strong support for the position of Amborella as the earliest diverging lineage of flowering plants, followed by Nymphaeales and Austrobaileyales. The plastid genome trees also provide strong support for a sister relationship between eudicots and monocots, and this group is sister to a clade that includes Chloranthales and magnoliids. Resolution of relationships among the major clades of angiosperms provides the necessary framework for addressing numerous evolutionary questions regarding the rapid diversification of angiosperms. Gene and intron content are highly conserved among the early diverging angiosperms and basal eudicots, but 62 independent gene and intron losses are limited to the more derived monocot and eudicot clades. Moreover, a lineage-specific correlation was detected between rates of nucleotide substitutions, indels, and genomic rearrangements.


Methods in Enzymology | 2005

Methods for Obtaining and Analyzing Whole Chloroplast Genome Sequences

Robert K. Jansen; Linda A. Raubeson; Jeffrey L. Boore; Claude W. dePamphilis; Timothy W. Chumley; Rosemarie C. Haberle; Stacia K. Wyman; Andrew J. Alverson; Rhiannon Peery; Sallie J. Herman; H. Matthew Fourcade; Jennifer V. Kuehl; Joel R. McNeal; Jim Leebens-Mack; Liying Cui

During the past decade, there has been a rapid increase in our understanding of plastid genome organization and evolution due to the availability of many new completely sequenced genomes. There are 45 complete genomes published and ongoing projects are likely to increase this sampling to nearly 200 genomes during the next 5 years. Several groups of researchers including ours have been developing new techniques for gathering and analyzing entire plastid genome sequences and details of these developments are summarized in this chapter. The most important developments that enhance our ability to generate whole chloroplast genome sequences involve the generation of pure fractions of chloroplast genomes by whole genome amplification using rolling circle amplification, cloning genomes into Fosmid or bacterial artificial chromosome (BAC) vectors, and the development of an organellar annotation program (Dual Organellar GenoMe Annotator [DOGMA]). In addition to providing details of these methods, we provide an overview of methods for analyzing complete plastid genome sequences for repeats and gene content, as well as approaches for using gene order and sequence data for phylogeny reconstruction. This explosive increase in the number of sequenced plastid genomes and improved computational tools will provide many insights into the evolution of these genomes and much new data for assessing relationships at deep nodes in plants and other photosynthetic organisms.


Genome Biology and Evolution | 2010

Comparative Metagenomics and Population Dynamics of the Gut Microbiota in Mother and Infant

Parag Vaishampayan; Jennifer V. Kuehl; Jeffrey L. Froula; Jenna Morgan; Howard Ochman; M. Pilar Francino

Colonization of the gastrointestinal tract (GIT) of human infants with a suitable microbial community is essential for numerous aspects of health, but the progression of events by which this microbiota becomes established is poorly understood. Here, we investigate two previously unexplored areas of microbiota development in infants: the deployment of functional capabilities at the community level and the population genetics of its most abundant genera. To assess the progression of the infant microbiota toward an adult-like state and to evaluate the contribution of maternal GIT bacteria to the infant gut, we compare the infant’s microbiota with that of the mother at 1 and 11 months after delivery. These comparisons reveal that the infant’s microbiota rapidly acquires and maintains the range of gene functions present in the mother, without replicating the phylogenetic composition of her microbiota. Microdiversity analyses for Bacteroides and Bifidobacterium, two of the main microbiota constituents, reveal that by 11 months, the phylotypes detected in the infant are distinct from those in the mother, although the maternal Bacteroides phylotypes were transiently present at 1 month of age. The configuration of genetic variants within these genera reveals populations far from equilibrium and likely to be undergoing rapid growth, consistent with recent population turnovers. Such compositional turnovers and the associated loss of maternal phylotypes should limit the potential for long-term coadaptation between specific bacterial and host genotypes.


American Journal of Botany | 2007

A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats

Ruth E. Timme; Jennifer V. Kuehl; Jeffrey L. Boore; Robert K. Jansen

We have sequenced two complete chloroplast genomes in the Asteraceae, Helianthus annuus (sunflower), and Lactuca sativa (lettuce), which belong to the distantly related subfamilies, Asteroideae and Cichorioideae, respectively. The Helianthus chloroplast genome is 151 104 bp and the Lactuca genome is 152 772 bp long, which is within the usual size range for chloroplast genomes in flowering plants. When compared to tobacco, both genomes have two inversions: a large 22.8-kb inversion and a smaller 3.3-kb inversion nested within it. Pairwise sequence divergence across all genes, introns, and spacers in Helianthus and Lactuca has resulted in the discovery of new, fast-evolving DNA sequences for use in species-level phylogenetics, such as the trnY-rpoB, trnL-rpl32, and ndhC-trnV spacers. Analysis and categorization of shared repeats resulted in seven classes useful for future repeat studies: double tandem repeats, three or more tandem repeats, direct repeats dispersed in the genome, repeats found in reverse complement orientation, hairpin loops, runs of As or Ts in excess of 12 bp, and gene or tRNA similarity. Results from BLAST searches of our genomic sequence against expressed sequence tag (EST) databases for both genomes produced eight likely RNA edited sites (C → U changes). These detailed analyses in Asteraceae contribute to a broader understanding of plastid evolution across flowering plants.


Molecular Biology and Evolution | 2011

Extreme Reconfiguration of Plastid Genomes in the Angiosperm Family Geraniaceae: Rearrangements, Repeats, and Codon Usage

Mary M. Guisinger; Jennifer V. Kuehl; Jeffrey L. Boore; Robert K. Jansen

Geraniaceae plastid genomes (plastomes) have experienced a remarkable number of genomic changes. The plastomes of Erodium texanum, Geranium palmatum, and Monsonia speciosa were sequenced and compared with other rosids and the previously published Pelargonium hortorum plastome. Geraniaceae plastomes were found to be highly variable in size, gene content and order, repetitive DNA, and codon usage. Several unique plastome rearrangements include the disruption of two highly conserved operons (S10 and rps2-atpA), and the inverted repeat (IR) region in M. speciosa does not contain all genes in the ribosomal RNA operon. The sequence of M. speciosa is unusually small (128,787 bp); among angiosperm plastomes sequenced to date, only those of nonphotosynthetic species and those that have lost one IR copy are smaller. In contrast, the plastome of P. hortorum is the largest, at 217,942 bp. These genomes have experienced numerous gene and intron losses and partial and complete gene duplications. Some of the losses are shared throughout the family (e.g., trnT-GGU and the introns of rps16 and rpl16); however, other losses are homoplasious (e.g., trnG-UCC intron in G. palmatum and M. speciosa). IR length is also highly variable. The IR in P. hortorum was previously shown to be greatly expanded to 76 kb, and the IR is lost in E. texanum and reduced in G. palmatum (11 kb) and M. speciosa (7 kb). Geraniaceae plastomes contain a high frequency of large repeats (>100 bp) relative to other rosids. Within each plastome, repeats are often located at rearrangement end points and many repeats shared among the four Geraniaceae flank rearrangement end points. GC content is elevated in the genomes and also in coding regions relative to other rosids. Codon usage per amino acid and GC content at third position sites are significantly different for Geraniaceae protein-coding sequences relative to other rosids. Our findings suggest that relaxed selection and/or mutational biases lead to increased GC content, and this in turn altered codon usage. We propose that increases in genomic rearrangements, repetitive DNA, nucleotide substitutions, and GC content may be caused by relaxed selection resulting from improper DNA repair.


Analytical Chemistry | 2014

Interactive XCMS Online: Simplifying Advanced Metabolomic Data Processing and Subsequent Statistical Analyses

Harsha Gowda; Julijana Ivanisevic; Caroline H. Johnson; Michael E. Kurczy; H. Paul Benton; Duane Rinehart; Thomas Nguyen; Jayashree Ray; Jennifer V. Kuehl; Bernardo Arevalo; Peter D Westenskow; Junhua Wang; Adam P. Arkin; Adam M. Deutschbauer; Gary J. Patti; Gary Siuzdak

XCMS Online (xcmsonline.scripps.edu) is a cloud-based informatic platform designed to process and visualize mass-spectrometry-based, untargeted metabolomic data. Initially, the platform was developed for two-group comparisons to match the independent, “control” versus “disease” experimental design. Here, we introduce an enhanced XCMS Online interface that enables users to perform dependent (paired) two-group comparisons, meta-analysis, and multigroup comparisons, with comprehensive statistical output and interactive visualization tools. Newly incorporated statistical tests cover a wide array of univariate analyses. Multigroup comparison allows for the identification of differentially expressed metabolite features across multiple classes of data while higher order meta-analysis facilitates the identification of shared metabolic patterns across multiple two-group comparisons. Given the complexity of these data sets, we have developed an interactive platform where users can monitor the statistical output of univariate (cloud plots) and multivariate (PCA plots) data analysis in real time by adjusting the threshold and range of various parameters. On the interactive cloud plot, metabolite features can be filtered out by their significance level (p-value), fold change, mass-to-charge ratio, retention time, and intensity. The variation pattern of each feature can be visualized on both extracted-ion chromatograms and box plots. The interactive principal component analysis includes scores, loadings, and scree plots that can be adjusted depending on scaling criteria. The utility of XCMS functionalities is demonstrated through the metabolomic analysis of bacterial stress response and the comparison of lymphoblastic leukemia cell lines.


BMC Plant Biology | 2007

Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta

Joel R. McNeal; Jennifer V. Kuehl; Jeffrey L. Boore; Claude W. de Pamphilis

BackgroundPlastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle.ResultsAside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception.ConclusionAlthough Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species.


Journal of Molecular Evolution | 2010

Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae

Mary M. Guisinger; Timothy W. Chumley; Jennifer V. Kuehl; Jeffrey L. Boore; Robert K. Jansen

Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions

Mary M. Guisinger; Jennifer V. Kuehl; Jeffrey L. Boore; Robert K. Jansen

Angiosperm plastid genomes are generally conserved in gene content and order with rates of nucleotide substitutions for protein-coding genes lower than for nuclear protein-coding genes. A few groups have experienced genomic change, and extreme changes in gene content and order are found within the flowering plant family Geraniaceae. The complete plastid genome sequence of Pelargonium X hortorum (Geraniaceae) reveals the largest and most rearranged plastid genome identified to date. Highly elevated rates of sequence evolution in Geraniaceae mitochondrial genomes have been reported, but rates in Geraniaceae plastid genomes have not been characterized. Analysis of nucleotide substitution rates for 72 plastid genes for 47 angiosperm taxa, including nine Geraniaceae, show that values of dN are highly accelerated in ribosomal protein and RNA polymerase genes throughout the family. Furthermore, dN/dS is significantly elevated in the same two classes of plastid genes as well as in ATPase genes. A relatively high dN/dS ratio could be interpreted as evidence of two phenomena, namely positive or relaxed selection, neither of which is consistent with our current understanding of plastid genome evolution in photosynthetic plants. These analyses are the first to use protein-coding sequences from complete plastid genomes to characterize rates and patterns of sequence evolution for a broad sampling of photosynthetic angiosperms, and they reveal unprecedented accumulation of nucleotide substitutions in Geraniaceae. To explain these remarkable substitution patterns in the highly rearranged Geraniaceae plastid genomes, we propose a model of aberrant DNA repair coupled with altered gene expression.


BMC Evolutionary Biology | 2006

Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids

Zhengqiu Cai; Cynthia Penaflor; Jennifer V. Kuehl; Jim Leebens-Mack; John E. Carlson; Claude W. dePamphilis; Jeffrey L. Boore; Robert K. Jansen

BackgroundThe magnoliids with four orders, 19 families, and 8,500 species represent one of the largest clades of early diverging angiosperms. Although several recent angiosperm phylogenetic analyses supported the monophyly of magnoliids and suggested relationships among the orders, the limited number of genes examined resulted in only weak support, and these issues remain controversial. Furthermore, considerable incongruence resulted in phylogenetic reconstructions supporting three different sets of relationships among magnoliids and the two large angiosperm clades, monocots and eudicots. We sequenced the plastid genomes of three magnoliids, Drimys (Canellales), Liriodendron (Magnoliales), and Piper (Piperales), and used these data in combination with 32 other angiosperm plastid genomes to assess phylogenetic relationships among magnoliids and to examine patterns of variation of GC content.ResultsThe Drimys, Liriodendron, and Piper plastid genomes are very similar in size at 160,604, 159,886 bp, and 160,624 bp, respectively. Gene content and order are nearly identical to many other unrearranged angiosperm plastid genomes, including Calycanthus, the other published magnoliid genome. Overall GC content ranges from 34–39%, and coding regions have a substantially higher GC content than non-coding regions. Among protein-coding genes, GC content varies by codon position with 1st codon > 2nd codon > 3rd codon, and it varies by functional group with photosynthetic genes having the highest percentage and NADH genes the lowest. Phylogenetic analyses using parsimony and likelihood methods and sequences of 61 protein-coding genes provided strong support for the monophyly of magnoliids and two strongly supported groups were identified, the Canellales/Piperales and the Laurales/Magnoliales. Strong support is reported for monocots and eudicots as sister clades with magnoliids diverging before the monocot-eudicot split. The trees also provided moderate or strong support for the position of Amborella as sister to a clade including all other angiosperms.ConclusionEvolutionary comparisons of three new magnoliid plastid genome sequences, combined with other published angiosperm genomes, confirm that GC content is unevenly distributed across the genome by location, codon position, and functional group. Furthermore, phylogenetic analyses provide the strongest support so far for the hypothesis that the magnoliids are sister to a large clade that includes both monocots and eudicots.

Collaboration


Dive into the Jennifer V. Kuehl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Deutschbauer

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Adam P. Arkin

Sanford-Burnham Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Morgan N. Price

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Claude W. dePamphilis

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayashree Ray

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge