Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joel R. McNeal is active.

Publication


Featured researches published by Joel R. McNeal.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns

Robert K. Jansen; Zhengqiu Cai; Linda A. Raubeson; Henry Daniell; W Claude; Jim Leebens-Mack; Mary Guisinger-Bellian; Rosemarie C. Haberle; Anne Hansen; Timothy W. Chumley; Seung-Bum Lee; Rhiannon Peery; Joel R. McNeal; Jennifer V. Kuehl; Jeffrey L. Boore

Angiosperms are the largest and most successful clade of land plants with >250,000 species distributed in nearly every terrestrial habitat. Many phylogenetic studies have been based on DNA sequences of one to several genes, but, despite decades of intensive efforts, relationships among early diverging lineages and several of the major clades remain either incompletely resolved or weakly supported. We performed phylogenetic analyses of 81 plastid genes in 64 sequenced genomes, including 13 new genomes, to estimate relationships among the major angiosperm clades, and the resulting trees are used to examine the evolution of gene and intron content. Phylogenetic trees from multiple methods, including model-based approaches, provide strong support for the position of Amborella as the earliest diverging lineage of flowering plants, followed by Nymphaeales and Austrobaileyales. The plastid genome trees also provide strong support for a sister relationship between eudicots and monocots, and this group is sister to a clade that includes Chloranthales and magnoliids. Resolution of relationships among the major clades of angiosperms provides the necessary framework for addressing numerous evolutionary questions regarding the rapid diversification of angiosperms. Gene and intron content are highly conserved among the early diverging angiosperms and basal eudicots, but 62 independent gene and intron losses are limited to the more derived monocot and eudicot clades. Moreover, a lineage-specific correlation was detected between rates of nucleotide substitutions, indels, and genomic rearrangements.


Methods in Enzymology | 2005

Methods for Obtaining and Analyzing Whole Chloroplast Genome Sequences

Robert K. Jansen; Linda A. Raubeson; Jeffrey L. Boore; Claude W. dePamphilis; Timothy W. Chumley; Rosemarie C. Haberle; Stacia K. Wyman; Andrew J. Alverson; Rhiannon Peery; Sallie J. Herman; H. Matthew Fourcade; Jennifer V. Kuehl; Joel R. McNeal; Jim Leebens-Mack; Liying Cui

During the past decade, there has been a rapid increase in our understanding of plastid genome organization and evolution due to the availability of many new completely sequenced genomes. There are 45 complete genomes published and ongoing projects are likely to increase this sampling to nearly 200 genomes during the next 5 years. Several groups of researchers including ours have been developing new techniques for gathering and analyzing entire plastid genome sequences and details of these developments are summarized in this chapter. The most important developments that enhance our ability to generate whole chloroplast genome sequences involve the generation of pure fractions of chloroplast genomes by whole genome amplification using rolling circle amplification, cloning genomes into Fosmid or bacterial artificial chromosome (BAC) vectors, and the development of an organellar annotation program (Dual Organellar GenoMe Annotator [DOGMA]). In addition to providing details of these methods, we provide an overview of methods for analyzing complete plastid genome sequences for repeats and gene content, as well as approaches for using gene order and sequence data for phylogeny reconstruction. This explosive increase in the number of sequenced plastid genomes and improved computational tools will provide many insights into the evolution of these genomes and much new data for assessing relationships at deep nodes in plants and other photosynthetic organisms.


Genome Biology | 2012

A genome triplication associated with early diversification of the core eudicots.

Yuannian Jiao; Jim Leebens-Mack; Saravanaraj Ayyampalayam; John E. Bowers; Michael R. McKain; Joel R. McNeal; Megan Rolf; Daniel R. Ruzicka; Eric Wafula; Norman J. Wickett; Xiaolei Wu; Yong Zhang; Jun Wang; Yeting Zhang; Eric J. Carpenter; Michael K. Deyholos; Toni M. Kutchan; André S. Chanderbali; Pamela S. Soltis; Dennis W. Stevenson; Richard McCombie; J. C. Pires; Gane Ka-Shu Wong; Douglas E. Soltis; Claude W. dePamphilis

BackgroundAlthough it is agreed that a major polyploidy event, gamma, occurred within the eudicots, the phylogenetic placement of the event remains unclear.ResultsTo determine when this polyploidization occurred relative to speciation events in angiosperm history, we employed a phylogenomic approach to investigate the timing of gene set duplications located on syntenic gamma blocks. We populated 769 putative gene families with large sets of homologs obtained from public transcriptomes of basal angiosperms, magnoliids, asterids, and more than 91.8 gigabases of new next-generation transcriptome sequences of non-grass monocots and basal eudicots. The overwhelming majority (95%) of well-resolved gamma duplications was placed before the separation of rosids and asterids and after the split of monocots and eudicots, providing strong evidence that the gamma polyploidy event occurred early in eudicot evolution. Further, the majority of gene duplications was placed after the divergence of the Ranunculales and core eudicots, indicating that the gamma appears to be restricted to core eudicots. Molecular dating estimates indicate that the duplication events were intensely concentrated around 117 million years ago.ConclusionsThe rapid radiation of core eudicot lineages that gave rise to nearly 75% of angiosperm species appears to have occurred coincidentally or shortly following the gamma triplication event. Reconciliation of gene trees with a species phylogeny can elucidate the timing of major events in genome evolution, even when genome sequences are only available for a subset of species represented in the gene trees. Comprehensive transcriptome datasets are valuable complements to genome sequences for high-resolution phylogenomic analysis.


BMC Evolutionary Biology | 2007

Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants

Todd J. Barkman; Joel R. McNeal; Seok Hong Lim; Gwen Coat; Henrietta Brown Croom; Nelson D. Young; Claude W. dePamphilis

BackgroundSome of the most difficult phylogenetic questions in evolutionary biology involve identification of the free-living relatives of parasitic organisms, particularly those of parasitic flowering plants. Consequently, the number of origins of parasitism and the phylogenetic distribution of the heterotrophic lifestyle among angiosperm lineages is unclear.ResultsHere we report the results of a phylogenetic analysis of 102 species of seed plants designed to infer the position of all haustorial parasitic angiosperm lineages using three mitochondrial genes: atp1, coxI, and matR. Overall, the mtDNA phylogeny agrees with independent studies in terms of non-parasitic plant relationships and reveals at least 11 independent origins of parasitism in angiosperms, eight of which consist entirely of holoparasitic species that lack photosynthetic ability. From these results, it can be inferred that modern-day parasites have disproportionately evolved in certain lineages and that the endoparasitic habit has arisen by convergence in four clades. In addition, reduced taxon, single gene analyses revealed multiple horizontal transfers of atp1 from host to parasite lineage, suggesting that parasites may be important vectors of horizontal gene transfer in angiosperms. Furthermore, in Pilostyles we show evidence for a recent host-to-parasite atp1 transfer based on a chimeric gene sequence that indicates multiple historical xenologous gene acquisitions have occurred in this endoparasite. Finally, the phylogenetic relationships inferred for parasites indicate that the origins of parasitism in angiosperms are strongly correlated with horizontal acquisitions of the invasive coxI group I intron.ConclusionCollectively, these results indicate that the parasitic lifestyle has arisen repeatedly in angiosperm evolutionary history and results in increasing parasite genomic chimerism over time.


Annals of the Missouri Botanical Garden | 2010

Assembling the Tree of the Monocotyledons: Plastome Sequence Phylogeny and Evolution of Poales1

Thomas J. Givnish; Mercedes Ames; Joel R. McNeal; Michael R. McKain; P. Roxanne Steele; Claude W. dePamphilis; Sean W. Graham; J. Chris Pires; Dennis W. Stevenson; Wendy B. Zomlefer; Barbara G. Briggs; Melvin R. Duvall; Michael J. Moore; J. Michael Heaney; Douglas E. Soltis; Pamela S. Soltis; Kevin Thiele; Jim Leebens-Mack

Abstract The order Poales comprises a substantial portion of plant life (7% of all angiosperms and 33% of monocots) and includes taxa of enormous economic and ecological significance. Molecular and morphological studies over the past two decades, however, leave uncertain many relationships within Poales and among allied commelinid orders. Here we present the results of an initial project by the Monocot AToL (Angiosperm Tree of Life) team on phylogeny and evolution in Poales, using sequence data for 81 plastid genes (exceeding 101 aligned kb) from 83 species of angiosperms. We recovered highly concordant relationships using maximum likelihood (ML) and maximum parsimony (MP), with 98.2% mean ML bootstrap support across monocots. For the first time, ML resolves ties among Poales and other commelinid orders with moderate to strong support. Analyses provide strong support for Bromeliaceae being sister to the rest of Poales; Typhaceae, Rapateaceae, and cyperids (sedges, rushes, and their allies) emerge next along the phylogenetic spine. Graminids (grasses and their allies) and restiids (Restionaceae and its allies) are well supported as sister taxa. MP identifies a xyrid clade (Eriocaulaceae, Mayacaceae, Xyridaceae) sister to cyperids, but ML (with much stronger support) places them as a grade with respect to restiids + graminids. The conflict in resolution between these analyses likely reflects long-branch attraction and highly elevated substitution rates in some Poales. All other familial relationships within the order are strongly supported by both MP and ML analyses. Character-state mapping implies that ancestral Poales lived in sunny, fire-prone, at least seasonally damp/wet, and possibly nutrient-poor sites, and were animal pollinated. Five subsequent shifts to wind pollination—in Typhaceae, cyperids, restiids, Ecdeiocoleaceae, and the vast PACCMAD-BEP clade of grasses—are significantly correlated with shifts to open habitats and small, inconspicuous, unisexual, and nectar-free flowers. Prime ecological movers driving the repeated evolution of wind pollination in Poales appear to include open habitats combined with the high local dominance of conspecific taxa, with the latter resulting from large-scale disturbances, combined with tall plant stature, vigorous vegetative spread, and positive ecological feedback. Reproductive assurance in the absence of reliable animal visitation probably favored wind pollination in annuals and short-statured perennials of Centrolepidaceae in ephemerally wet depressions and windswept alpine sites.


BMC Plant Biology | 2007

Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta

Joel R. McNeal; Jennifer V. Kuehl; Jeffrey L. Boore; Claude W. de Pamphilis

BackgroundPlastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle.ResultsAside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception.ConclusionAlthough Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species.


American Journal of Botany | 2013

Phylogeny and origins of holoparasitism in Orobanchaceae

Joel R. McNeal; Jonathan R. Bennett; Andrea D. Wolfe; Sarah Mathews

UNLABELLED PREMISE Orobanchaceae are a family of angiosperms that range from fully autotrophic and free-living to completely heterotrophic and dependent on their hosts (holoparasites). Most of the ca. 2060 species are hemiparasites that photosynthesize throughout all or part of their life cycles. Certain family members are ecologically important due to direct impacts on community biomass and diversity, plant-herbivore interactions, and nutrient cycling. Other members are among the most economically damaging weeds in the world. Multiple trophic transitions within this family make it ideal for studying molecular evolutionary and physiological changes that accompany the evolution of parasitism. • METHODS To establish a phylogenetic framework for such work, we substantially increased taxonomic sampling at loci for which a significant amount of data already existed (nuclear ITS and PHYA, plastid matK and rps2) and added data from the low-copy nuclear locus, PHYB. • KEY RESULTS The data provide strong support for relationships among six major clades and for the position of Brandisia hancei Hook. f. The positions of Boschniakia himalaica Hook. f. & Thomson, Centranthera cochinchinensis (Lour.) Merr., Mannagettaea hummelii Harry Sm., and Pterygiella nigrescens Oliv. are confirmed or suggested for the first time. • CONCLUSIONS There is a single origin of parasitism, and from within the hemiparasites, holoparasitism has originated three times. Moving from the base to the tips of the Orobanchaceae tree, the successive major splits within the parasitic clade are: Cymbarieae + the rest; Orobancheae + the rest; Brandisia + the rest; Rhinantheae + the rest; and Pedicularideae + Buchnereae.


BMC Biology | 2007

Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae)

Joel R. McNeal; Kathiravetpilla Arumugunathan; Jennifer V. Kuehl; Jeffrey L. Boore; Claude W. dePamphilis

BackgroundThe genus Cuscuta L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context.ResultsHere we present a well-supported phylogeny of Cuscuta using sequences of the nuclear ribosomal internal transcribed spacer and plastid rps2, rbcL and matK from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus Cuscuta is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with rbcL exhibiting even higher levels of purifying selection in Cuscuta than photosynthetic relatives. Nuclear genome size is highly variable within Cuscuta, particularly within subgenus Grammica, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species.ConclusionSome morphological characters traditionally used to define major taxonomic splits within Cuscuta are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of Cuscuta retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America.


Genome Biology and Evolution | 2016

A phylogenomic assessment of ancient polyploidy and genome evolution across the Poales

Michael R. McKain; Haibao Tang; Joel R. McNeal; Saravanaraj Ayyampalayam; Jerrold I. Davis; Claude W. dePamphilis; Thomas J. Givnish; J. Chris Pires; Dennis W. Stevenson; Jim Leebens-Mack

Comparisons of flowering plant genomes reveal multiple rounds of ancient polyploidy characterized by large intragenomic syntenic blocks. Three such whole-genome duplication (WGD) events, designated as rho (ρ), sigma (σ), and tau (τ), have been identified in the genomes of cereal grasses. Precise dating of these WGD events is necessary to investigate how they have influenced diversification rates, evolutionary innovations, and genomic characteristics such as the GC profile of protein-coding sequences. The timing of these events has remained uncertain due to the paucity of monocot genome sequence data outside the grass family (Poaceae). Phylogenomic analysis of protein-coding genes from sequenced genomes and transcriptome assemblies from 35 species, including representatives of all families within the Poales, has resolved the timing of rho and sigma relative to speciation events and placed tau prior to divergence of Asparagales and the commelinids but after divergence with eudicots. Examination of gene family phylogenies indicates that rho occurred just prior to the diversification of Poaceae and sigma occurred before early diversification of Poales lineages but after the Poales-commelinid split. Additional lineage-specific WGD events were identified on the basis of the transcriptome data. Gene families exhibiting high GC content are underrepresented among those with duplicate genes that persisted following these genome duplications. However, genome duplications had little overall influence on lineage-specific changes in the GC content of coding genes. Improved resolution of the timing of WGD events in monocot history provides evidence for the influence of polyploidization on functional evolution and species diversification.


PLOS ONE | 2009

Parallel Loss of Plastid Introns and Their Maturase in the Genus Cuscuta

Joel R. McNeal; Jennifer V. Kuehl; Jeffrey L. Boore; Jim Leebens-Mack; Claude W. dePamphilis

Plastid genome content and arrangement are highly conserved across most land plants and their closest relatives, streptophyte algae, with nearly all plastid introns having invaded the genome in their common ancestor at least 450 million years ago. One such intron, within the transfer RNA trnK-UUU, contains a large open reading frame that encodes a presumed intron maturase, matK. This gene is missing from the plastid genomes of two species in the parasitic plant genus Cuscuta but is found in all other published land plant and streptophyte algal plastid genomes, including that of the nonphotosynthetic angiosperm Epifagus virginiana and two other species of Cuscuta. By examining matK and plastid intron distribution in Cuscuta, we add support to the hypothesis that its normal role is in splicing seven of the eight group IIA introns in the genome. We also analyze matK nucleotide sequences from Cuscuta species and relatives that retain matK to test whether changes in selective pressure in the maturase are associated with intron deletion. Stepwise loss of most group IIA introns from the plastid genome results in substantial change in selective pressure within the hypothetical RNA-binding domain of matK in both Cuscuta and Epifagus, either through evolution from a generalist to a specialist intron splicer or due to loss of a particular intron responsible for most of the constraint on the binding region. The possibility of intron-specific specialization in the X-domain is implicated by evidence of positive selection on the lineage leading to C. nitida in association with the loss of six of seven introns putatively spliced by matK. Moreover, transfer RNA gene deletion facilitated by parasitism combined with an unusually high rate of intron loss from remaining functional plastid genes created a unique circumstance on the lineage leading to Cuscuta subgenus Grammica that allowed elimination of matK in the most species-rich lineage of Cuscuta.

Collaboration


Dive into the Joel R. McNeal's collaboration.

Top Co-Authors

Avatar

Claude W. dePamphilis

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer V. Kuehl

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael R. McKain

Donald Danforth Plant Science Center

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Givnish

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge