Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenny Molet is active.

Publication


Featured researches published by Jenny Molet.


Developmental Psychobiology | 2014

Naturalistic rodent models of chronic early-life stress

Jenny Molet; Pamela M. Maras; Sarit Avishai-Eliner; Tallie Z. Baram

A close association between early-life experience and cognitive and emotional outcomes is found in humans. In experimental models, early-life experience can directly influence a number of brain functions long-term. Specifically, and often in concert with genetic background, experience regulates structural and functional maturation of brain circuits and alters individual neuronal function via large-scale changes in gene expression. Because adverse experience during sensitive developmental periods is often associated with neuropsychiatric disease, there is an impetus to create realistic models of distinct early-life experiences. These can then be used to study causality between early-life experiential factors and cognitive and emotional outcomes, and to probe the underlying mechanisms. Although chronic early-life stress has been linked to the emergence of emotional and cognitive disorders later in life, most commonly used rodent models of involve daily maternal separation and hence intermittent early-life stress. We describe here a naturalistic and robust chronic early-life stress model that potently influences cognitive and emotional outcomes. Mice and rats undergoing this stress develop structural and functional deficits in a number of limbic-cortical circuits. Whereas overt pathological memory impairments appear during adulthood, emotional and cognitive vulnerabilities emerge already during adolescence. This naturalistic paradigm, widely adopted around the world, significantly enriches the repertoire of experimental tools available for the study of normal brain maturation and of cognitive and stress-related disorders including depression, autism, post-traumatic stress disorder, and dementia.


Molecular Psychiatry | 2014

Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress.

Pamela M. Maras; Jenny Molet; Yuncai Chen; Courtney J. Rice; S G Ji; Ana Solodkin; Tallie Z. Baram

The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress.


Endocrinology | 2015

Diversity of Reporter Expression Patterns in Transgenic Mouse Lines Targeting Corticotropin-Releasing Hormone-Expressing Neurons

Yuncai Chen; Jenny Molet; Benjamin G. Gunn; Kerry J. Ressler; Tallie Z. Baram

Transgenic mice, including lines targeting corticotropin-releasing factor (CRF or CRH), have been extensively employed to study stress neurobiology. These powerful tools are poised to revolutionize our understanding of the localization and connectivity of CRH-expressing neurons, and the crucial roles of CRH in normal and pathological conditions. Accurate interpretation of studies using cell type-specific transgenic mice vitally depends on congruence between expression of the endogenous peptide and reporter. If reporter expression does not faithfully reproduce native gene expression, then effects of manipulating unintentionally targeted cells may be misattributed. Here, we studied CRH and reporter expression patterns in 3 adult transgenic mice: Crh-IRES-Cre;Ai14 (tdTomato mouse), Crfp3.0CreGFP, and Crh-GFP BAC. We employed the CRH antiserum generated by Vale after validating its specificity using CRH-null mice. We focused the analyses on stress-salient regions, including hypothalamus, amygdala, bed nucleus of the stria terminalis, and hippocampus. Expression patterns of endogenous CRH were consistent among wild-type and transgenic mice. In tdTomato mice, most CRH-expressing neurons coexpressed the reporter, yet the reporter identified a few non-CRH-expressing pyramidal-like cells in hippocampal CA1 and CA3. In Crfp3.0CreGFP mice, coexpression of CRH and the reporter was found in central amygdala and, less commonly, in other evaluated regions. In Crh-GFP BAC mice, the large majority of neurons expressed either CRH or reporter, with little overlap. These data highlight significant diversity in concordant expression of reporter and endogenous CRH among 3 available transgenic mice. These findings should be instrumental in interpreting important scientific findings emerging from the use of these potent neurobiological tools.


Translational Psychiatry | 2016

Fragmentation and high entropy of neonatal experience predict adolescent emotional outcome.

Jenny Molet; Kevin Heins; X Zhuo; Y T Mei; Limor Regev; Tallie Z. Baram; Hal S. Stern

Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Across evolution, maternal care is a key source of environmental sensory signals to the developing brain, and a vast body of work has linked quantitative and qualitative aspects of maternal care to emotional outcome in children and animals. However, the fundamental properties of maternal signals, that promote advantageous vs pathological outcomes in the offspring, are unknown and have been a topic of intense study. We studied emotional outcomes of adolescent rats reared under routine or impoverished environments, and used mathematical approaches to analyze the nurturing behaviors of the dams. Unexpectedly, whereas the quantity and typical qualities of maternal care behaviors were indistinguishable in the two environments, their patterns and rhythms differed drastically and influenced emotional outcomes. Specifically, unpredictable, fragmented maternal care patterns translated into high-entropy rates of sensory signals to the offspring in the impoverished cages. During adolescence, these offspring had significant reductions in sucrose preference and in peer-play, two independent measures of the ability to experience pleasure. This adolescent anhedonia, often a harbinger of later depression, was not accompanied by measures of anxiety or helplessness. Dopaminergic pleasure circuits underlying anhedonia are engaged by predictable sequences of events, and predictable sensory signals during neonatal periods may be critical for their maturation. Conversely, unpredictability maternal-derived signals may disrupt these developmental processes, provoking anhedonia. In sum, high-entropy and fragmented patterns of maternal-derived sensory input to the developing brain predicts, and might promote, the development of anhedonia in rodents, with potential clinical implications.


Neurobiology of Stress | 2015

Hyper-excitability and epilepsy generated by chronic early-life stress.

Céline M. Dubé; Jenny Molet; Akanksha Singh-Taylor; Autumn S. Ivy; Pamela M. Maras; Tallie Z. Baram

Epilepsy is more prevalent in populations with high measures of stress, but the neurobiological mechanisms are unclear. Stress is a common precipitant of seizures in individuals with epilepsy, and may provoke seizures by several mechanisms including changes in neurotransmitter and hormone levels within the brain. Importantly, stress during sensitive periods early in life contributes to ‘brain programming’, influencing neuronal function and brain networks. However, it is unclear if early-life stress influences limbic excitability and promotes epilepsy. Here we used an established, naturalistic model of chronic early-life stress (CES), and employed chronic cortical and limbic video-EEGs combined with molecular and cellular techniques to probe the contributions of stress to age-specific epilepsies and network hyperexcitability and identify the underlying mechanisms. In control male rats, EEGs obtained throughout development were normal and no seizures were observed. EEGs demonstrated epileptic spikes and spike series in the majority of rats experiencing CES, and 57% of CES rats developed seizures: Behavioral events resembling the human age-specific epilepsy infantile spasms occurred in 11/23 (48%), accompanied by EEG spikes and/or electrodecrements, and two additional rats (9%) developed limbic seizures that involved the amygdala. Probing for stress-dependent, endogenous convulsant molecules within amygdala, we examined the expression of the pro-convulsant neuropeptide corticotropin-releasing hormone (CRH), and found a significant increase of amygdalar--but not cortical--CRH expression in adolescent CES rats. In conclusion, CES of limited duration has long-lasting effects on brain excitability and may promote age-specific seizures and epilepsy. Whereas the mechanisms involved require further study, these findings provide important insights into environmental contributions to early-life seizures.


Neurobiology of Stress | 2015

Synaptic rewiring of stress-sensitive neurons by early-life experience: A mechanism for resilience?

Akanksha Singh-Taylor; Aniko Korosi; Jenny Molet; Benjamin G. Gunn; Tallie Z. Baram

Genes and environment interact to influence cognitive and emotional functions throughout life. Early-life experiences in particular contribute to vulnerability or resilience to a number of emotional and cognitive illnesses in humans. In rodents, early-life experiences directly lead to resilience or vulnerability to stress later in life, and influence the development of cognitive and emotional deficits. The mechanisms for the enduring effects of early-life experiences on cognitive and emotional outcomes are not completely understood. Here, we present emerging information supporting experience-dependent modulation of the number and efficacy of synaptic inputs onto stress-sensitive neurons. This synaptic ‘rewiring’, in turn, may influence the expression of crucial neuronal genes. The persistent changes in gene expression in resilient versus vulnerable rodent models are likely maintained via epigenetic mechanisms. Thus, early-life experience may generate resilience by altering synaptic input to neurons, which informs them to modulate their epigenetic machinery.


Molecular Psychiatry | 2018

NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience

Akanksha Singh-Taylor; Jenny Molet; S Jiang; Aniko Korosi; Jessica L. Bolton; Yoav Noam; K Simeone; Jessica L. Cope; Yuncai Chen; Ali Mortazavi; Tallie Z. Baram

Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.


The Journal of Neuroscience | 2016

Converging, Synergistic Actions of Multiple Stress Hormones Mediate Enduring Memory Impairments after Acute Simultaneous Stresses

Yuncai Chen; Jenny Molet; Julie C. Lauterborn; Brian H. Trieu; Jessica L. Bolton; Katelin P. Patterson; Christine M. Gall; Gary Lynch; Tallie Z. Baram

Stress influences memory, an adaptive process crucial for survival. During stress, hippocampal synapses are bathed in a mixture of stress-released molecules, yet it is unknown whether or how these interact to mediate the effects of stress on memory. Here, we demonstrate novel synergistic actions of corticosterone and corticotropin-releasing hormone (CRH) on synaptic physiology and dendritic spine structure that mediate the profound effects of acute concurrent stresses on memory. Spatial memory in mice was impaired enduringly after acute concurrent stresses resulting from loss of synaptic potentiation associated with disrupted structure of synapse-bearing dendritic spines. Combined application of the stress hormones corticosterone and CRH recapitulated the physiological and structural defects provoked by acute stresses. Mechanistically, corticosterone and CRH, via their cognate receptors, acted synergistically on the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Accordingly, blocking the receptors of both hormones, but not each alone, rescued memory. Therefore, the synergistic actions of corticosterone and CRH at hippocampal synapses underlie memory impairments after concurrent and perhaps also single, severe acute stresses, with potential implications to spatial memory dysfunction in, for example, posttraumatic stress disorder. SIGNIFICANCE STATEMENT Stress influences memory, an adaptive process crucial for survival. During stress, adrenal corticosterone and hippocampal corticotropin-releasing hormone (CRH) permeate memory-forming hippocampal synapses, yet it is unknown whether (and how) these hormones interact to mediate effects of stress. Here, we demonstrate novel synergistic actions of corticosterone and CRH on hippocampal synaptic plasticity and spine structure that mediate the memory-disrupting effects of stress. Combined application of both hormones provoked synaptic function collapse and spine disruption. Mechanistically, corticosterone and CRH synergized at the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Notably, blocking both hormones, but not each alone, prevented the enduring memory problems after acute concurrent stresses. Therefore, synergistic actions of corticosterone and CRH underlie enduring memory impairments after concurrent acute stresses, which might be relevant to spatial memory deficits described in posttraumatic stress disorder.


Hippocampus | 2016

MRI uncovers disrupted hippocampal microstructure that underlies memory impairments after early‐life adversity

Jenny Molet; Pamela M. Maras; Eli Kinney-Lang; Neil G. Harris; Faisal Rashid; Autumn S. Ivy; Ana Solodkin; Andre Obenaus; Tallie Z. Baram

Memory and related cognitive functions are progressively impaired in a subgroup of individuals experiencing childhood adversity and stress. However, it is not possible to identify vulnerable individuals early, a crucial step for intervention. In this study, high‐resolution magnetic resonance imaging (MRI) and intra‐hippocampal diffusion tensor imaging (DTI) were employed to examine for structural signatures of cognitive adolescent vulnerabilities in a rodent model of early‐life adversity. These methods were complemented by neuroanatomical and functional assessments of hippocampal network integrity during adolescence, adulthood and middle‐age. The high‐resolution MRI identified selective loss of dorsal hippocampal volume, and intra‐hippocampal DTI uncovered disruption of dendritic structure, consistent with disrupted local connectivity, already during late adolescence in adversity‐experiencing rats. Memory deteriorated over time, and stunting of hippocampal dendritic trees was apparent on neuroanatomical analyses. Thus, disrupted hippocampal neuronal structure and connectivity, associated with cognitive impairments, are detectable via non‐invasive imaging modalities in rats experiencing early‐life adversity. These high‐resolution imaging approaches may constitute promising tools for prediction and assessment of at‐risk individuals in the clinic.


Biological Psychiatry | 2018

Anhedonia Following Early-Life Adversity Involves Aberrant Interaction of Reward and Anxiety Circuits and Is Reversed by Partial Silencing of Amygdala Corticotropin-Releasing Hormone Gene

Jessica L. Bolton; Jenny Molet; Limor Regev; Yuncai Chen; Neggy Rismanchi; Elizabeth Haddad; Derek Z. Yang; Andre Obenaus; Tallie Z. Baram

BACKGROUND Anhedonia, the diminished ability to experience pleasure, is an important dimensional entity linked to depression, schizophrenia, and other emotional disorders, but its origins and mechanisms are poorly understood. We have previously identified anhedonia, manifest as decreased sucrose preference and social play, in adolescent male rats that experienced chronic early-life adversity/stress (CES). Here we probed the molecular, cellular, and circuit processes underlying CES-induced anhedonia and tested them mechanistically. METHODS We examined functional brain circuits and neuronal populations activated by social play in adolescent CES and control rats. Structural connectivity between stress- and reward-related networks was probed using high-resolution diffusion tensor imaging, and cellular/regional activation was probed using c-Fos. We employed viral-genetic approaches to reduce corticotropin-releasing hormone (Crh) expression in the central nucleus of the amygdala in anhedonic rats, and tested for anhedonia reversal in the same animals. RESULTS Sucrose preference was reduced in adolescent CES rats. Social play, generally considered an independent measure of pleasure, activated brain regions involved in reward circuitry in both control and CES groups. In CES rats, social play activated Crh-expressing neurons in the central nucleus of the amygdala, typically involved in anxiety/fear, indicating aberrant functional connectivity of pleasure/reward and fear circuits. Diffusion tensor imaging tractography revealed increased structural connectivity of the amygdala to the medial prefrontal cortex in CES rats. Crh-short hairpin RNA, but not control short hairpin RNA, given into the central nucleus of the amygdala reversed CES-induced anhedonia without influencing other emotional measures. CONCLUSIONS These findings robustly demonstrate aberrant interactions of stress and reward networks after early-life adversity and suggest mechanistic roles for Crh-expressing amygdala neurons in emotional deficits portending major neuropsychiatric disorders.

Collaboration


Dive into the Jenny Molet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuncai Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mandy Biraud

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvette Taché

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Autumn S. Ivy

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge