Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Georg is active.

Publication


Featured researches published by Jens Georg.


Microbiology and Molecular Biology Reviews | 2011

cis-Antisense RNA, Another Level of Gene Regulation in Bacteria

Jens Georg; Wolfgang R. Hess

SUMMARY A substantial amount of antisense transcription is a hallmark of gene expression in eukaryotes. However, antisense transcription was first demonstrated in bacteria almost 50 years ago. The transcriptomes of bacteria as different as Helicobacter pylori, Bacillus subtilis, Escherichia coli, Synechocystis sp. strain PCC6803, Mycoplasma pneumoniae, Sinorhizobium meliloti, Geobacter sulfurreducens, Vibrio cholerae, Chlamydia trachomatis, Pseudomonas syringae, and Staphylococcus aureus have now been reported to contain antisense RNA (asRNA) transcripts for a high percentage of genes. Bacterial asRNAs share functional similarities with trans-acting regulatory RNAs, but in addition, they use their own distinct mechanisms. Among their confirmed functional roles are transcription termination, codegradation, control of translation, transcriptional interference, and enhanced stability of their respective target transcripts. Here, we review recent publications indicating that asRNAs occur as frequently in simple unicellular bacteria as they do in higher organisms, and we provide a comprehensive overview of the experimentally confirmed characteristics of asRNA actions and intimately linked quantitative aspects. Emerging functional data suggest that asRNAs in bacteria mediate a plethora of effects and are involved in far more processes than were previously anticipated. Thus, the functional impact of asRNAs should be considered when developing new strategies against pathogenic bacteria and when optimizing bacterial strains for biotechnology.


Proceedings of the National Academy of Sciences of the United States of America | 2011

An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803

Jan Mitschke; Jens Georg; Ingeborg Scholz; Cynthia M. Sharma; Dennis Dienst; J. Bantscheff; Björn Voss; Claudia Steglich; Annegret Wilde; Jörg Vogel; Wolfgang R. Hess

There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ∼64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5′ annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research.


Molecular Systems Biology | 2009

Evidence for a major role of antisense RNAs in cyanobacterial gene regulation

Jens Georg; Björn Voß; Ingeborg Scholz; Jan Mitschke; Annegret Wilde; Wolfgang R. Hess

Information on the numbers and functions of naturally occurring antisense RNAs (asRNAs) in eubacteria has thus far remained incomplete. Here, we screened the model cyanobacterium Synechocystis sp. PCC 6803 for asRNAs using four different methods. In the final data set, the number of known noncoding RNAs rose from 6 earlier identified to 60 and of asRNAs from 1 to 73 (28 were verified using at least three methods). Among these, there are many asRNAs to housekeeping, regulatory or metabolic genes, as well as to genes encoding electron transport proteins. Transferring cultures to high light, carbon‐limited conditions or darkness influenced the expression levels of several asRNAs, suggesting their functional relevance. Examples include the asRNA to rpl1, which accumulates in a light‐dependent manner and may be required for processing the L11 r‐operon and the SyR7 noncoding RNA, which is antisense to the murF 5′ UTR, possibly modulating murein biosynthesis. Extrapolated to the whole genome, ∼10% of all genes in Synechocystis are influenced by asRNAs. Thus, chromosomally encoded asRNAs may have an important function in eubacterial regulatory networks.


Nucleic Acids Research | 2014

CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains

Patrick R. Wright; Jens Georg; Martin Mann; Dragoş Alexandru Sorescu; Andreas S. Richter; Steffen C. Lott; Robert Kleinkauf; Wolfgang R. Hess; Rolf Backofen

CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Comparative genomics boosts target prediction for bacterial small RNAs

Patrick R. Wright; Andreas S. Richter; Kai Papenfort; Martin Mann; Jörg Vogel; Wolfgang R. Hess; Rolf Backofen; Jens Georg

Significance This study presents a unique approach (CopraRNA, for Comparative Prediction Algorithm for sRNA Targets) towards reliably predicting the targets of bacterial small regulatory RNAs (sRNAs). These molecules are important regulators of gene expression. Their detailed analysis thus far has been hampered by the lack of reliable algorithms to predict their mRNA targets. CopraRNA integrates phylogenetic information to predict sRNA targets at the genomic scale, reconstructs regulatory networks upon functional enrichment and network analysis, and predicts the sRNA domains for target recognition and interaction. Our results demonstrate that CopraRNA substantially improves the bioinformatic prediction of target genes and opens the field for the application to nonmodel bacteria. Small RNAs (sRNAs) constitute a large and heterogeneous class of bacterial gene expression regulators. Much like eukaryotic microRNAs, these sRNAs typically target multiple mRNAs through short seed pairing, thereby acting as global posttranscriptional regulators. In some bacteria, evidence for hundreds to possibly more than 1,000 different sRNAs has been obtained by transcriptome sequencing. However, the experimental identification of possible targets and, therefore, their confirmation as functional regulators of gene expression has remained laborious. Here, we present a strategy that integrates phylogenetic information to predict sRNA targets at the genomic scale and reconstructs regulatory networks upon functional enrichment and network analysis (CopraRNA, for Comparative Prediction Algorithm for sRNA Targets). Furthermore, CopraRNA precisely predicts the sRNA domains for target recognition and interaction. When applied to several model sRNAs, CopraRNA revealed additional targets and functions for the sRNAs CyaR, FnrS, RybB, RyhB, SgrS, and Spot42. Moreover, the mRNAs gdhA, lrp, marA, nagZ, ptsI, sdhA, and yobF-cspC were suggested as regulatory hubs targeted by up to seven different sRNAs. The verification of many previously undetected targets by CopraRNA, even for extensively investigated sRNAs, demonstrates its advantages and shows that CopraRNA-based analyses can compete with experimental target prediction approaches. A Web interface allows high-confidence target prediction and efficient classification of bacterial sRNAs.


BMC Genomics | 2009

Biocomputational prediction of non-coding RNAs in model cyanobacteria.

Björn Voß; Jens Georg; Verena Schön; Susanne Ude; Wolfgang R. Hess

BackgroundIn bacteria, non-coding RNAs (ncRNA) are crucial regulators of gene expression, controlling various stress responses, virulence, and motility. Previous work revealed a relatively high number of ncRNAs in some marine cyanobacteria. However, for efficient genetic and biochemical analysis it would be desirable to identify a set of ncRNA candidate genes in model cyanobacteria that are easy to manipulate and for which extended mutant, transcriptomic and proteomic data sets are available.ResultsHere we have used comparative genome analysis for the biocomputational prediction of ncRNA genes and other sequence/structure-conserved elements in intergenic regions of the three unicellular model cyanobacteria Synechocystis PCC6803, Synechococcus elongatus PCC6301 and Thermosynechococcus elongatus BP1 plus the toxic Microcystis aeruginosa NIES843. The unfiltered numbers of predicted elements in these strains is 383, 168, 168, and 809, respectively, combined into 443 sequence clusters, whereas the numbers of individual elements with high support are 94, 56, 64, and 406, respectively. Removing also transposon-associated repeats, finally 78, 53, 42 and 168 sequences, respectively, are left belonging to 109 different clusters in the data set. Experimental analysis of selected ncRNA candidates in Synechocystis PCC6803 validated new ncRNAs originating from the fabF-hoxH and apcC-prmA intergenic spacers and three highly expressed ncRNAs belonging to the Yfr2 family of ncRNAs. Yfr2a promoter-luxAB fusions confirmed a very strong activity of this promoter and indicated a stimulation of expression if the cultures were exposed to elevated light intensities.ConclusionComparison to entries in Rfam and experimental testing of selected ncRNA candidates in Synechocystis PCC6803 indicate a high reliability of the current prediction, despite some contamination by the high number of repetitive sequences in some of these species. In particular, we identified in the four species altogether 8 new ncRNA homologs belonging to the Yfr2 family of ncRNAs. Modelling of RNA secondary structures indicated two conserved single-stranded sequence motifs that might be involved in RNA-protein interactions or in the recognition of target RNAs. Since our analysis has been restricted to find ncRNA candidates with a reasonable high degree of conservation among these four cyanobacteria, there might be many more, requiring direct experimental approaches for their identification.


Journal of Biological Chemistry | 2012

The antisense RNA As1_flv4 in the cyanobacterium Synechocystis sp. PCC 6803 prevents premature expression of the flv4-2 operon upon shift in inorganic carbon supply

Marion Eisenhut; Jens Georg; Stephan Klähn; Isamu Sakurai; Henna Mustila; Pengpeng Zhang; Wolfgang R. Hess; Eva-Mari Aro

Background: Flavodiiron proteins encoded by the flv4-2 operon are photoprotective for photosystem II, but their regulation of expression has remained enigmatic. Results: Expression of flv4-2 is controlled jointly by NdhR and the antisense RNA As1_flv4, whereas As1_flv4 is controlled by an AbrB-like factor. Conclusion: As1_flv4 provides a safety threshold preventing premature expression. Significance: Regulatory networks controlling photosynthetic photoprotection are highly complex. The functional relevance of natural cis-antisense transcripts is mostly unknown. Here we have characterized the association of three antisense RNAs and one intergenically encoded noncoding RNA with an operon that plays a crucial role in photoprotection of photosystem II under low carbon conditions in the cyanobacterium Synechocystis sp. PCC 6803. Cyanobacteria show strong gene expression dynamics in response to a shift of cells from high carbon to low levels of inorganic carbon (Ci), but the regulatory mechanisms are poorly understood. Among the most up-regulated genes in Synechocystis are flv4, sll0218, and flv2, which are organized in the flv4-2 operon. The flavodiiron proteins encoded by this operon open up an alternative electron transfer route, likely starting from the QB site in photosystem II, under photooxidative stress conditions. Our expression analysis of cells shifted from high carbon to low carbon demonstrated an inversely correlated transcript accumulation of the flv4-2 operon mRNA and one antisense RNA to flv4, designated as As1_flv4. Overexpression of As1_flv4 led to a decrease in flv4-2 mRNA. The promoter activity of as1_flv4 was transiently stimulated by Ci limitation and negatively regulated by the AbrB-like transcription regulator Sll0822, whereas the flv4-2 operon was positively regulated by the transcription factor NdhR. The results indicate that the tightly regulated antisense RNA As1_flv4 establishes a transient threshold for flv4-2 expression in the early phase after a change in Ci conditions. Thus, it prevents unfavorable synthesis of the proteins from the flv4-2 operon.


The Plant Cell | 2014

The Small Regulatory RNA SyR1/PsrR1 Controls Photosynthetic Functions in Cyanobacteria

Jens Georg; Dennis Dienst; Nils Schürgers; Thomas Wallner; Dominik Kopp; Damir Stazic; Ekaterina Kuchmina; Stephan Klähn; Heiko Lokstein; Wolfgang R. Hess; Annegret Wilde

This work describes the role of a small noncoding RNA in the regulation of photosynthetic gene expression in cyanobacteria. Advanced computational target prediction combined with extensive experimental data reveal the photosynthesis regulatory RNA 1 as a key modulator of photosynthetic functions upon high-light exposure. Little is known so far about RNA regulators of photosynthesis in plants, algae, or cyanobacteria. The small RNA PsrR1 (formerly SyR1) has been discovered in Synechocystis sp PCC 6803 and appears to be widely conserved within the cyanobacterial phylum. Expression of PsrR1 is induced shortly after a shift from moderate to high-light conditions. Artificial overexpression of PsrR1 led to a bleaching phenotype under moderate light growth conditions. Advanced computational target prediction suggested that several photosynthesis-related mRNAs could be controlled by PsrR1, a finding supported by the results of transcriptome profiling experiments upon pulsed overexpression of this small RNA in Synechocystis sp PCC 6803. We confirmed the interaction between PsrR1 and the ribosome binding regions of the psaL, psaJ, chlN, and cpcA mRNAs by mutational analysis in a heterologous reporter system. Focusing on psaL as a specific target, we show that the psaL mRNA is processed by RNase E only in the presence of PsrR1. Furthermore, we provide evidence for a posttranscriptional regulation of psaL by PsrR1 in the wild type at various environmental conditions and analyzed the consequences of PsrR1-based regulation on photosystem I. In summary, computational and experimental data consistently establish the small RNA PsrR1 as a regulatory factor controlling photosynthetic functions.


G3: Genes, Genomes, Genetics | 2012

Iron Deprivation in Synechocystis: Inference of Pathways, Non-coding RNAs, and Regulatory Elements from Comprehensive Expression Profiling

Miguel A. Hernández-Prieto; Verena Schön; Jens Georg; Luísa Barreira; J. Varela; Wolfgang R. Hess; Matthias E. Futschik

Iron is an essential cofactor in many metabolic reactions. Mechanisms controlling iron homeostasis need to respond rapidly to changes in extracellular conditions, but they must also keep the concentration of intracellular iron under strict control to avoid the generation of damaging reactive oxygen species. Due to its role as a redox carrier in photosynthesis, the iron quota in cyanobacteria is about 10 times higher than in model enterobacteria. The molecular details of how such a high quota is regulated are obscure. Here we present experiments that shed light on the iron regulatory system in cyanobacteria. We measured time-resolved changes in gene expression after iron depletion in the cyanobacterium Synechocystis sp. PCC 6803 using a comprehensive microarray platform, monitoring both protein-coding and non-coding transcripts. In total, less than a fifth of all protein-coding genes were differentially expressed during the first 72 hr. Many of these proteins are associated with iron transport, photosynthesis, or ATP synthesis. Comparing our data with three previous studies, we identified a core set of 28 genes involved in iron stress response. Among them were genes important for assimilation of inorganic carbon, suggesting a link between the carbon and iron regulatory networks. Nine of the 28 genes have unknown functions and constitute key targets for further functional analysis. Statistical and clustering analyses identified 10 small RNAs, 62 antisense RNAs, four 5′UTRs, and seven intragenic elements as potential novel components of the iron regulatory network in Synechocystis. Hence, our genome-wide expression profiling indicates an unprecedented complexity in the iron regulatory network of cyanobacteria.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7

Stephan Klähn; Christoph Schaal; Jens Georg; Desirée Baumgartner; Gernot Knippen; Martin Hagemann; Alicia M. Muro-Pastor; Wolfgang R. Hess

Significance A key enzyme in inorganic nitrogen assimilation, glutamine synthetase, is the target of multiple regulatory mechanisms. Here we describe the nitrogen stress-induced RNA 4 (NsiR4), a small regulatory RNA that reduces the expression of inactivating factor 7 (IF7), an inhibitory factor of glutamine synthetase in cyanobacteria. The expression of NsiR4 is under positive control through the nitrogen control transcription factor (NtcA). NtcA also induces the transcription of the glutamine synthetase gene and represses the gene encoding IF7. Therefore, NsiR4 is a new player in the NtcA-mediated regulation of nitrogen assimilation, which is important for adaptations to rapid changes in available nitrogen sources and concentrations. Glutamine synthetase (GS), a key enzyme in biological nitrogen assimilation, is regulated in multiple ways in response to varying nitrogen sources and levels. Here we show a small regulatory RNA, NsiR4 (nitrogen stress-induced RNA 4), which plays an important role in the regulation of GS in cyanobacteria. NsiR4 expression in the unicellular Synechocystis sp. PCC 6803 and in the filamentous, nitrogen-fixing Anabaena sp. PCC 7120 is stimulated through nitrogen limitation via NtcA, the global transcriptional regulator of genes involved in nitrogen metabolism. NsiR4 is widely conserved throughout the cyanobacterial phylum, suggesting a conserved function. In silico target prediction, transcriptome profiling on pulse overexpression, and site-directed mutagenesis experiments using a heterologous reporter system showed that NsiR4 interacts with the 5′UTR of gifA mRNA, which encodes glutamine synthetase inactivating factor (IF)7. In Synechocystis, we observed an inverse relationship between the levels of NsiR4 and the accumulation of IF7 in vivo. This NsiR4-dependent modulation of gifA (IF7) mRNA accumulation influenced the glutamine pool and thus NH4+ assimilation via GS. As a second target, we identified ssr1528, a hitherto uncharacterized nitrogen-regulated gene. Competition experiments between WT and an ΔnsiR4 KO mutant showed that the lack of NsiR4 led to decreased acclimation capabilities of Synechocystis toward oscillating nitrogen levels. These results suggest a role for NsiR4 in the regulation of nitrogen metabolism in cyanobacteria, especially for the adaptation to rapid changes in available nitrogen sources and concentrations. NsiR4 is, to our knowledge, the first identified bacterial sRNA regulating the primary assimilation of a macronutrient.

Collaboration


Dive into the Jens Georg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis Dienst

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Björn Voß

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar

Ilka M. Axmann

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge