Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jens Schwachtje is active.

Publication


Featured researches published by Jens Schwachtje.


Proceedings of the National Academy of Sciences of the United States of America | 2006

SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots

Jens Schwachtje; Peter E. H. Minchin; Sigfried Jahnke; Joost T. van Dongen; Ursula Schittko; Ian T. Baldwin

Herbivore attack elicits costly defenses that are known to decrease plant fitness by using resources that are normally slated for growth and reproduction. Additionally, plants have evolved mechanisms for tolerating attack, which are not understood on a molecular level. Using 11C-photosynthate labeling as well as sugar and enzyme measurements, we found rapid changes in sink–source relations in the annual Nicotiana attenuata after simulated herbivore attacks, which increased the allocation of sugars to roots. This herbivore-induced response is regulated by the β-subunit of an SnRK1 (SNF1-related kinase) protein kinase, GAL83, transcripts of which are rapidly down-regulated in source leaves after herbivore attack and, when silenced, increase assimilate transport to roots. This C diversion response is activated by herbivore-specific elicitors and is independent of jasmonate signaling, which regulates most of the plants defense responses. Herbivore attack during early stages of development increases root reserves, which, in turn, delays senescence and prolongs flowering. That attacked GAL83-silenced plants use their enhanced root reserves to prolong reproduction demonstrates that SnRK1 alters resource allocation so that plants better tolerate herbivory. This tolerance mechanism complements the likely defensive value of diverting resources to a less vulnerable location within the plant.


Plant Physiology | 2008

Why Does Herbivore Attack Reconfigure Primary Metabolism

Jens Schwachtje; Ian T. Baldwin

A plants resistance to herbivore attack is thought to be principally determined by its secondary metabolism, which can be remarkably plastic and responsive to different grades and types of herbivory. Newer unbiased “omic” approaches, which characterize transcriptomic, metabolomic, and proteomic


Biological Reviews | 2016

Priming and memory of stress responses in organisms lacking a nervous system.

Monika Hilker; Jens Schwachtje; Margarete Baier; Salma Balazadeh; Isabel Bäurle; Sven Geiselhardt; Dirk K. Hincha; Reinhard Kunze; Bernd Mueller-Roeber; Matthias C. Rillig; Jens Rolff; Tina Romeis; Thomas Schmülling; Anke Steppuhn; Joost T. van Dongen; Sarah J. Whitcomb; Susanne Wurst; Ellen Zuther; Joachim Kopka

Experience and memory of environmental stimuli that indicate future stress can prepare (prime) organismic stress responses even in species lacking a nervous system. The process through which such organisms prepare their phenotype for an improved response to future stress has been termed ‘priming’. However, other terms are also used for this phenomenon, especially when considering priming in different types of organisms and when referring to different stressors. Here we propose a conceptual framework for priming of stress responses in bacteria, fungi and plants which allows comparison of priming with other terms, e.g. adaptation, acclimation, induction, acquired resistance and cross protection. We address spatial and temporal aspects of priming and highlight current knowledge about the mechanisms necessary for information storage which range from epigenetic marks to the accumulation of (dormant) signalling molecules. Furthermore, we outline possible patterns of primed stress responses. Finally, we link the ability of organisms to become primed for stress responses (their ‘primability’) with evolutionary ecology aspects and discuss which properties of an organism and its environment may favour the evolution of priming of stress responses.


PLOS ONE | 2011

A Naturally Associated Rhizobacterium of Arabidopsis thaliana Induces a Starvation-Like Transcriptional Response while Promoting Growth

Jens Schwachtje; Silke Karojet; Ina Thormählen; Carolin Bernholz; Sabine Kunz; Stephan Brouwer; Melanie Schwochow; Karin Köhl; Joost T. van Dongen

Plant growth promotion by rhizobacteria is a known phenomenon but the underlying mechanisms are poorly understood. We searched for plant growth-promoting rhizobacteria that are naturally associated with Arabidopsis thaliana to investigate the molecular mechanisms that are involved in plant growth-promotion. We isolated a Pseudomonas bacterium (Pseudomonas sp. G62) from roots of field-grown Arabidopsis plants that has not been described previously and analyzed its effect on plant growth, gene expression and the level of sugars and amino acids in the host plant. Inoculation with Pseudomonas sp. G62 promoted plant growth under various growth conditions. Microarray analysis revealed rapid changes in transcript levels of genes annotated to energy-, sugar- and cell wall metabolism in plants 6 h after root inoculation with P. sp. G62. The expression of several of these genes remained stable over weeks, but appeared differentially regulated in roots and shoots. The global gene expression profile observed after inoculation with P. sp. G62 showed a striking resemblance with previously described carbohydrate starvation experiments, although plants were not depleted from soluble sugars, and even showed a slight increase of the sucrose level in roots 5 weeks after inoculation. We suggest that the starvation-like transcriptional phenotype - while steady state sucrose levels are not reduced - is induced by a yet unknown signal from the bacterium that simulates sugar starvation. We discuss the potential effects of the sugar starvation signal on plant growth promotion.


PLOS ONE | 2008

Reverse genetics in ecological research

Jens Schwachtje; Susan Kutschbach; Ian T. Baldwin

By precisely manipulating the expression of individual genetic elements thought to be important for ecological performance, reverse genetics has the potential to revolutionize plant ecology. However, untested concerns about possible side-effects of the transformation technique, caused by Agrobacterium infection and tissue culture, on plant performance have stymied research by requiring onerous sample sizes. We compare 5 independently transformed Nicotiana attenuata lines harboring empty vector control (EVC) T-DNA lacking silencing information with isogenic wild types (WT), and measured a battery of ecologically relevant traits, known to be important in plant-herbivore interactions: phytohormones, secondary metabolites, growth and fitness parameters under stringent competitive conditions, and transcriptional regulation with microarrays. As a positive control, we included a line silenced in trypsin proteinase inhibitor gene (TPI) expression, a potent anti-herbivore defense known to exact fitness costs in its expression, in the analysis. The experiment was conducted twice, with 10 and 20 biological replicates per genotype. For all parameters, we detected no difference between any EVC and WT lines, but could readily detect a fitness benefit of silencing TPI production. A statistical power analyses revealed that the minimum sample sizes required for detecting significant fitness differences between EVC and WT was 2–3 orders of magnitude larger than the 10 replicates required to detect a fitness effect of TPI silencing. We conclude that possible side-effects of transformation are far too low to obfuscate the study of ecologically relevant phenotypes.


Methods of Molecular Biology | 2014

Profiling Methods to Identify Cold-Regulated Primary Metabolites Using Gas Chromatography Coupled to Mass Spectrometry

Frederik Dethloff; Alexander Erban; Isabel Orf; Jessica Alpers; Ines Fehrle; Olga Beine-Golovchuk; Stefanie Schmidt; Jens Schwachtje; Joachim Kopka

This book chapter describes the analytical procedures required for the profiling of a metabolite fraction enriched for primary metabolites. The profiling is based on routine gas chromatography coupled to mass spectrometry (GC-MS). The generic profiling method is adapted to plant material, specifically to the analysis of single leaves from plants that were exposed to temperature stress experiments. The described method is modular. The modules include a rapid sampling and metabolic inactivation protocol for samples in a wide size range, a sample extraction procedure, a chemical derivatization step that is required to make the metabolite fraction amenable to gas chromatographic analysis, a routine GC-MS method, and finally the procedures of data processing and data mining. A basic and extendable set of standardizations for metabolite recovery and retention index alignment of the resulting GC-MS chromatograms is included. The method has two applications: (1) the rapid screening for changes of relative metabolite pools sizes under temperature stress and (2) the verification of cold-regulated metabolites by exact quantification using a GC-MS protocol with extended internal and external standardization.


Nature plants | 2016

Extrafloral nectar secretion from wounds of Solanum dulcamara

T. Lortzing; O.W. Calf; M. Bohlke; Jens Schwachtje; Joachim Kopka; D. Geuss; S. Kosanke; N.M. van Dam; Anke Steppuhn

Plants usually close wounds rapidly to prevent infections and the loss of valuable resources such as assimilates1. However, herbivore-inflicted wounds on the bittersweet nightshade Solanum dulcamara appear not to close completely and produce sugary wound secretions visible as droplets. Many plants across the plant kingdom secrete sugary nectar from extrafloral nectaries2 to attract natural enemies of herbivores for indirect defence3,4. As ants forage on wound edges of S. dulcamara in the field, we hypothesized that wound secretions are a form of extrafloral nectar (EFN). We show that, unlike EFN from known nectaries, wound secretions are neither associated with any specific structure nor restricted to certain locations. However, similar to EFN, they are jasmonate-inducible and the plant controls their chemical composition. Wound secretions are attractive for ants, and application of wound secretion mimics increases ant attraction and reduces herbivory on S. dulcamara plants in a natural population. In greenhouse experiments, we reveal that ants can defend S. dulcamara from two of its native herbivores, slugs and flea beetle larvae. Since nectar is defined by its ecological function as a sugary secretion involved in interactions with animals5, such ‘plant bleeding’ could be a primitive mode of nectar secretion exemplifying an evolutionary origin of structured extrafloral nectaries.


Plant Signaling & Behavior | 2012

Plant-growth promoting effect of newly isolated rhizobacteria varies between two Arabidopsis ecotypes.

Jens Schwachtje; Silke Karojet; Sabine Kunz; Stephan Brouwer; Joost T. van Dongen

Various rhizobacteria are known for their beneficial effects on plants, i. e. promotion of growth and induction of systemic resistance against pathogens. These bacteria are categorized as plant growth promoting rhizobacteria (PGPR) and are associated with plant roots. Knowledge of the underlying mechanisms of plant growth promotion in vivo is still very limited, but interference of bacteria with plant hormone metabolism is suggested to play a major role. To obtain new growth promoting bacteria, we started a quest for rhizobacteria that are naturally associated to Arabidopsis thaliana. A suite of native root-associated bacteria were isolated from surface-sterilized roots of the Arabidopsis ecotype Gol-1 derived from a field site near Golm (Berlin area, Germany). We found several Pseudomonas and a Microbacterium species and tested these for growth promotion effects on the Arabidopsis ecotypes Gol-1 and Col-0, and for growth-promotion associated traits, such as auxin production, ACC deaminase activity and phosphate solubilization capacity. We showed that two of the bacteria strains promote plant growth with respect to rosette diameter, stalk length and accelerate development and that the effects were greater when bacteria were applied to Col-0 compared with Gol-1. Furthermore, the capability of promoting growth was not explained by the tested metabolic properties of the bacteria, suggesting that further bacterial traits are required. The natural variation of growth effects, combined with the extensive transgenic approaches available for the model plant Arabidopsis, will build a valuable tool to augment our understanding of the molecular mechanisms involved in the natural Arabidopsis - PGPR association.


Scientific Reports | 2018

Primed primary metabolism in systemic leaves: a functional systems analysis

Jens Schwachtje; Axel Fischer; Alexander Erban; Joachim Kopka

Plants evolved mechanisms to counteract bacterial infection by preparing yet uninfected systemic tissues for an enhanced defense response, so-called systemic acquired resistance or priming responses. Primed leaves express a wide range of genes that enhance the defense response once an infection takes place. While hormone-driven defense signalling and defensive metabolites have been well studied, less focus has been set on the reorganization of primary metabolism in systemic leaves. Since primary metabolism plays an essential role during defense to provide energy and chemical building blocks, we investigated changes in primary metabolism at RNA and metabolite levels in systemic leaves of Arabidopsis thaliana plants that were locally infected with Pseudomonas syringae. Known defense genes were still activated 3–4 days after infection. Also primary metabolism was significantly altered. Nitrogen (N)-metabolism and content of amino acids and other N-containing metabolites were significantly reduced, whereas the organic acids fumarate and malate were strongly increased. We suggest that reduction of N-metabolites in systemic leaves primes defense against bacterial infection by reducing the nutritional value of systemic tissue. Increased organic acids serve as quickly available metabolic resources of energy and carbon-building blocks for the production of defense metabolites during subsequent secondary infections.


Seed Science Research | 2004

Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata

Jens Schwachtje; Ian T. Baldwin

Collaboration


Dive into the Jens Schwachtje's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anke Steppuhn

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge