Jens T. Rosenberg
Florida State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jens T. Rosenberg.
Magnetic Resonance in Medicine | 2010
Jens T. Rosenberg; Joshua M. Kogot; Derek D. Lovingood; Geoffrey F. Strouse; Samuel C. Grant
Multimodal, biocompatible contrast agents for high magnetic field applications represent a new class of nanomaterials with significant potential for tracking of fluorescence and MR in vitro and vivo. Optimized for high‐field MR applications—including biomedical imaging at 21.1 T, the highest magnetic field available for MRI—these nanoparticles capitalize on the improved performance of chelated Dy3+ with increasing magnetic field coupled to a noncytotoxic Indium Phosphide/Zinc Sulfide (InP/ZnS) quantum dot that provides fluorescence detection, MR responsiveness, and payload delivery. By surface modifying the quantum dot with a cell‐penetrating peptide sequence coupled to an MR contrast agent, the bimodal nanomaterial functions as a self‐transfecting high‐field MR/optical contrast agent for nonspecific intracellular labeling. Fluorescent images confirm sequestration in perinuclear vesicles of labeled cells, with no apparent cytotoxicity. These techniques can be extended to impart cell selectivity or act as a delivery vehicle for genetic or pharmaceutical interventions. Magn Reson Med, 2010.
Nature Communications | 2014
Noam Shemesh; Jens T. Rosenberg; Jean-Nicolas Dumez; José Augusto Pereira Carneiro Muniz; Samuel C. Grant; Lucio Frydman
(1)H magnetic resonance spectroscopy (MRS) yields site-specific signatures that directly report metabolic concentrations, biochemistry and kinetics-provided spectral sensitivity and quality are sufficient. Here, an enabling relaxation-enhanced (RE) MRS approach is demonstrated that by combining highly selective spectral excitations with operation at very high magnetic fields, delivers spectra exhibiting signal-to-noise ratios >50:1 in under 6 s for ~5 × 5 × 5 (mm)(3) voxels, with flat baselines and no interference from water. With this spectral quality, MRS was used to interrogate a number of metabolic properties in stroked rat models. Metabolic confinements imposed by randomly oriented micro-architectures were detected and found to change upon ischaemia; intensities of downfield resonances were found to be selectively altered in stroked hemispheres; and longitudinal relaxation time of lactic acid was found to increase by over 50% its control value as early as 3-h post ischaemia, paralleling the onset of cytotoxic oedema. These results demonstrate potential of (1)H MRS at ultrahigh fields.
Biomaterials | 2014
Kristen M. Jaruszewski; Geoffry L. Curran; Suresh Kumar Swaminathan; Jens T. Rosenberg; Samuel C. Grant; Subramanian Ramakrishnan; Val J. Lowe; Joseph F. Poduslo; Karunya K. Kandimalla
Cerebral amyloid angiopathy (CAA) results from the accumulation of Aβ proteins primarily within the media and adventitia of small arteries and capillaries of the cortex and leptomeninges. CAA affects a majority of Alzheimers disease (AD) patients and is associated with a rapid decline in cognitive reserve. Unfortunately, there is no pre-mortem diagnosis available for CAA. Furthermore, treatment options are few and relatively ineffective. To combat this issue, we have designed nanovehicles (nanoparticles-IgG4.1) capable of targeting cerebrovascular amyloid (CVA) and serving as early diagnostic and therapeutic agents. These nanovehicles were loaded with Gadolinium (Gd) based (Magnevist(®)) magnetic resonance imaging contrast agents or single photon emission computed tomography (SPECT) agents, such as (125)I. In addition, the nanovehicles carry either anti-inflammatory and anti-amyloidogenic agents such as curcumin or immunosuppressants such as dexamethasone, which were previously shown to reduce cerebrovascular inflammation. Owing to the anti-amyloid antibody (IgG4.1) grafted on the surface, the nanovehicles are capable of specifically targeting CVA deposits. The nanovehicles effectively marginate from the blood flow to the vascular wall as determined by using quartz crystal microbalance with dissipation monitoring (QCM-D) technology. They demonstrate excellent distribution to the brain vasculature and target CVA, thus providing MRI and SPECT contrast specific to the CVA in the brain. In addition, they also display the potential to carry therapeutic agents to reduce cerebrovascular inflammation associated with CAA, which is believed to trigger hemorrhage in CAA patients.
Contrast Media & Molecular Imaging | 2012
Jens T. Rosenberg; Afi Sachi-Kocher; Michael W. Davidson; Samuel C. Grant
The purpose of this study is to investigate MRI contrast as a function of magnetic field strength for microglia labeled with superparamagnetic iron oxide (SPIO) nanoparticles. A rat microglia cell line, Bv2, was incubated with SPIOs for 6 h. In two separate experiments conducted at 11.75 and 21.1 T, the impact of SPIO loading and cell count on T(1) , T(2) and T(2) * contrast were evaluated: (a) cells were incubated with 1, 2 or 5 µl of Feridex; and (b) cells incubated with 5 µl of Feridex were used to form layers of 25 000, 50 000, 100 000 or 200 000 cells. Intracellular iron was analyzed with ICP-MS and histological staining while cell viability was evaluated by Trypan blue dye exclusion. Bv2 cells displayed increases in intracellular iron concentration with SPIO exposure, with the highest labeling yielding 0.83 pg of Fe per cell. Although no differences were identified for T(1) mechanisms, both fields displayed trends toward increasing T(2) and T(2) * contrast with increasing SPIO loading or cell count, with few differences evident between fields. Bv2 cells can be labeled readily with commercially available SPIOs, with the potential of increasing the intracellular iron content over short incubation times without impacting viability. This phagocytotic cell line not only provides direct SPIO uptake but also plays a critical role in inflammation after brain injury, providing a possible neurodegeneration biomarker. With few differences between field strengths and limited ability to quantify intracellular iron content and cell count, this study demonstrates only a slight benefit of SPIO-based contrast agent at high fields based on susceptibility-based contrast and detection, necessitating unique agents for such applications.
Cytotherapy | 2013
Jens T. Rosenberg; Katelyn L. Sellgren; Afi Sachi-Kocher; Fabian Calixto Bejarano; Michelle A. Baird; Michael W. Davidson; Teng Ma; Samuel C. Grant
BACKGROUND AIMS Human mesenchymal stem cells (hMSCs) have gained interest for treatment of stroke injury. Using in vitro culture, the purpose of this study was to investigate the long-term detectability of hMSCs by magnetic resonance imaging (MRI) after transfection with a superparamagnetic iron oxide (SPIO) and evaluate the effects of SPIO on cellular activity, particularly under an ischemic environment. METHODS hMSCs were exposed to low doses of SPIOs. After a short incubation period, cells were cultured for additional 1, 7 and 14 d to evaluate proliferation, colony formation and multilinear potential. Labeled cells were imaged and evaluated in agarose to quantify R2 and R2∗ contrast at each time point. Cells were placed in a low-oxygen, low-serum environment and tested for cytotoxicity. In addition, labeled cells were transplanted into an ischemic stroke model and evaluated with ex vivo MRI and histology. RESULTS Cellular events such as proliferation and differentiation were not affected at any of the exposures tested when cultured for 14 d. The low iron exposure and short incubation time are sufficient for detectability with MRI. However, the higher iron dosage results in higher calcification and cytotoxicity under in vitro ischemic conditions. Transplantation of the hMSCs labeled with an initial exposure of 22.4 μg of Fe showed excellent retention of contrast in stroke-induced rats. CONCLUSIONS Although SPIO labeling is stable for long-term MRI detection and has limited effects on the multilineage potential of hMSCs, high-dose SPIO labeling may affect hMSC survival under serum and oxygen withdrawal.
Journal of Magnetic Resonance | 2012
Chunqi Qian; Ihssan S Masad; Jens T. Rosenberg; Malathy Elumalai; William W. Brey; Samuel C. Grant; Peter L. Gor’kov
A tunable 900 MHz transmit/receive volume coil was constructed for ¹H MR imaging of biological samples in a 21.1 T vertical bore magnet. To accommodate a diverse range of specimen and RF loads at such a high frequency, a sliding-ring adaptation of a low-pass birdcage was implemented through simultaneous alteration of distributed capacitance. To make efficient use of the constrained space inside the vertical bore, a modular probe design was implemented with a bottom-adjustable tuning and matching apparatus. The sliding ring coil displays good homogeneity and sufficient tuning range for different samples of various dimensions representing large span of RF loads. High resolution in vivo and ex vivo images of large rats (up to 350 g), mice and human postmortem tissues were obtained to demonstrate coil functionality and to provide examples of potential applications at 21.1 T.
Cytotherapy | 2015
Sébastien Sart; Fabian Calixto Bejarano; Michelle A. Baird; Yuanwei Yan; Jens T. Rosenberg; Teng Ma; Samuel C. Grant; Yan Li
BACKGROUND AIMS Pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) represent an unlimited source for the treatment of various neurological disorders. NPCs are usually derived from PSCs through the formation of embryoid body (EB), an aggregate structure mimicking embryonic development. This study investigated the effect of labeling multicellular EB-NPC aggregates with micron-sized particles of iron oxide (MPIO) for cell tracking using magnetic resonance imaging (MRI). METHODS Intact and dissociated EB-NPC aggregates were labeled with various concentrations of MPIOs (0, 2.5, 5 and 10 μg Fe/mL). The labeled cells were analyzed by fluorescent imaging, flow cytometry and in vitro MRI for labeling efficiency and detectability. Moreover, the biological effects of intracellular MPIO on cell viability, cytotoxicity, proliferation and neural differentiation were evaluated. RESULTS Intact EB-NPC aggregates showed higher cell proliferation and viability compared with the dissociated cells. Despite diffusion limitation at low MPIO concentration, higher concentration of MPIO (i.e., 10 μg Fe/mL) was able to label EB-NPC aggregates at similar efficiency to the single cells. In vitro MRI showed concentration-dependent MPIO detection in EB-NPCs over 2.0-2.6 population doublings. More important, MPIO incorporation did not affect the proliferation and neural differentiation of EB-NPCs. CONCLUSIONS Multicellular EB-NPC aggregates can be efficiently labeled and tracked with MPIO while maintaining cell proliferation, phenotype and neural differentiation potential. This study demonstrated the feasibility of labeling EB-NPC aggregates with MPIO for cellular monitoring of in vitro cultures and in vivo transplantation.
Magnetic Resonance in Medicine | 2015
Avigdor Leftin; Jens T. Rosenberg; Eddy Solomon; Fabian Calixto Bejarano; Samuel C. Grant; Lucio Frydman
This study quantifies in vivo ischemic stroke brain injuries in rats using ultrahigh‐field single‐scan MRI methods to assess variations in apparent diffusion coefficients (ADCs).
Contrast Media & Molecular Imaging | 2014
Jens T. Rosenberg; Brandon T. Cisneros; Michael L Matson; Michelle Sokoll; Afi Sachi-Kocher; Fabian Calixto Bejarano; Lon J. Wilson; Samuel C. Grant
Single-walled carbon nanotubes (SWNTs) have gained interest for their biocompatibility and multifunctional properties. Ultra-short SWNTs (US-tubes) have demonstrated high proton relaxivity when encapsulating gadolinium ions (Gd(3+)) at clinical field strengths. At higher field strengths, however, Gd(3+) ions demonstrate decreased proton relaxation properties while chemically similar dysprosium ions (Dy(3+)) improve relaxation properties. This report investigates the first use of Gd(3+) and Dy(3+) ions within US-tubes (GNTs and DNTs, respectively) at ultra-high magnetic field (21.1 T). Both agents are compared in solution and as an intracellular contrast agent labeling a murine microglia cell line (Bv2) immobilized in a tissue-mimicking agarose phantom using two high magnetic fields: 21.1 and 11.75 T. In solution at 21.1 T, results show excellent transverse relaxation; DNTs outperformed GNTs as a T(2) agent with measured r(2)/r(1) ratios of 247 and 47, respectively. Additionally, intracellular DNTs were shown to be a better T(2) agent than GNTs with higher contrast percentages and contrast-to-noise ratios. As such, this study demonstrates the potential of DNTs at high magnetic fields for cellular labeling and future in vivo, MRI-based cell tracking.
PLOS ONE | 2017
Noam Shemesh; Jens T. Rosenberg; Jean-Nicolas Dumez; Samuel C. Grant; Lucio Frydman
Measuring cellular microstructures non-invasively and achieving specificity towards a cell-type population within an interrogated in vivo tissue, remains an outstanding challenge in brain research. Magnetic Resonance Spectroscopy (MRS) provides an opportunity to achieve cellular specificity via the spectral resolution of metabolites such as N-Acetylaspartate (NAA) and myo-Inositol (mI), which are considered neuronal and astrocytic markers, respectively. Yet the information typically obtained with MRS describes metabolic concentrations, diffusion coefficients or relaxation rates rather than microstructures. Understanding how these metabolites are compartmentalized is a challenging but important goal, which so far has been mainly addressed using diffusion models. Here, we present direct in vivo evidence for the confinement of NAA and mI within sub-cellular components, namely, the randomly oriented process of neurons and astrocytes, respectively. Our approach applied Relaxation Enhanced MRS at ultrahigh (21.1 T) field, and used its high 1H sensitivity to measure restricted diffusion correlations for NAA and mI using a Double Diffusion Encoding (DDE) filter. While very low macroscopic anisotropy was revealed by spatially localized Diffusion Tensor Spectroscopy, DDE displayed characteristic amplitude modulations reporting on confinements in otherwise randomly oriented anisotropic microstructures for both metabolites. This implies that for the chosen set of parameters, the DDE measurements had a biased sensitivity towards NAA and mI sited in the more confined environments of neurites and astrocytic branches, than in the cell somata. These measurements thus provide intrinsic diffusivities and compartment diameters, and revealed subcellular neuronal and astrocytic morphologies in normal in vivo rat brains. The relevance of these measurements towards human applications—which could in turn help understand CNS plasticity as well as diagnose brain diseases—is discussed.