Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerald Mahesh Kumar is active.

Publication


Featured researches published by Jerald Mahesh Kumar.


Diabetes | 2015

Metformin Inhibits Monocyte-to-Macrophage Differentiation via AMPK-Mediated Inhibition of STAT3 Activation: Potential Role in Atherosclerosis

Sathish Babu Vasamsetti; Santosh Karnewar; Anantha Koteswararao Kanugula; Avinash Raj Thatipalli; Jerald Mahesh Kumar; Srigiridhar Kotamraju

Monocyte-to-macrophage differentiation is a critical event that accentuates atherosclerosis by promoting an inflammatory environment within the vessel wall. In this study, we investigated the molecular mechanisms responsible for monocyte-to-macrophage differentiation and, subsequently, the effect of metformin in regressing angiotensin II (Ang-II)-mediated atheromatous plaque formation in ApoE−/− mice. AMPK activity was dose and time dependently downregulated during phorbol myristate acetate (PMA)-induced monocyte-to-macrophage differentiation, which was accompanied by an upregulation of proinflammatory cytokine production. Of note, AMPK activators metformin and AICAR significantly attenuated PMA-induced monocyte-to-macrophage differentiation and proinflammatory cytokine production. However, inhibition of AMPK activity alone by compound C was ineffective in promoting monocyte-to-macrophage differentiation in the absence of PMA. On the other hand, inhibition of c-Jun N-terminal kinase activity inhibited PMA-induced inflammation but not differentiation, suggesting that inflammation and differentiation are independent events. In contrast, inhibition of STAT3 activity inhibited both inflammation and monocyte-to-macrophage differentiation. By decreasing STAT3 phosphorylation, metformin and AICAR through increased AMPK activation caused inhibition of monocyte-to-macrophage differentiation. Metformin attenuated Ang-II–induced atheromatous plaque formation and aortic aneurysm in ApoE−/− mice partly by reducing monocyte infiltration. We conclude that the AMPK-STAT3 axis plays a pivotal role in regulating monocyte-to-macrophage differentiation and that by decreasing STAT3 phosphorylation through increased AMPK activity, AMPK activators inhibit monocyte-to-macrophage differentiation.


PLOS ONE | 2014

Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant Defence

Bidya Dhar Sahu; Anil Kumar Kalvala; Meghana Koneru; Jerald Mahesh Kumar; Madhusudana Kuncha; Shyam Sunder Rachamalla; Ramakrishna Sistla

Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.


Toxicology and Applied Pharmacology | 2014

Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

Bidya Dhar Sahu; Srujana Tatireddy; Meghana Koneru; Roshan M. Borkar; Jerald Mahesh Kumar; Madhusudana Kuncha; R. Srinivas; R Shyam Sunder; Ramakrishna Sistla

Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney.


PLOS ONE | 2015

Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways

Bidya Dhar Sahu; Jerald Mahesh Kumar; Ramakrishna Sistla

Acute renal failure is a serious complication of the anticancer drug cisplatin. The potential role of baicalein, a naturally occurring bioflavonoid on cisplatin-induced renal injury is unknown. Here, we assessed the effect of baicalein against a murine model of cisplatin-induced acute renal failure and investigated the underlying possible mechanisms. Renal function, kidney histology, inflammation, oxidative stress, renal mitochondrial function, proteins involved in apoptosis, nuclear translocation of Nrf2 and effects on intracellular signaling pathways such as MAPKs, and NF-κB were assessed. Pretreatment with baicalein ameliorated the cisplatin-induced renal oxidative stress, apoptosis and inflammation and improved kidney injury and function. Baicalein inhibited the cisplatin-induced expression of iNOS, TNF-α, IL-6 and mononuclear cell infiltration and concealed redox-sensitive transcription factor NF-κB activation via reduced DNA-binding activity, IκBα phosphorylation and p65 nuclear translocation in kidneys. Further studies demonstrated baicalein markedly attenuated cisplatin-induced p38 MAPK, ERK1/2 and JNK phosphorylation in kidneys. Baicalein also restored the renal antioxidants and increased the amount of total and nuclear accumulation of Nrf2 and downstream target protein, HO-1 in kidneys. Moreover, baicalein preserved mitochondrial respiratory enzyme activities and inhibited cisplatin-induced apoptosis by suppressing p53 expression, Bax/Bcl-2 imbalance, cytochrome c release and activation of caspase-9, caspase-3 and PARP. Our findings suggest that baicalein ameliorates cisplatin-induced renal damage through up-regulation of antioxidant defense mechanisms and down regulation of the MAPKs and NF-κB signaling pathways.


Life Sciences | 2016

Baicalein alleviates doxorubicin-induced cardiotoxicity via suppression of myocardial oxidative stress and apoptosis in mice.

Bidya Dhar Sahu; Jerald Mahesh Kumar; Madhusudana Kuncha; Roshan M. Borkar; R. Srinivas; Ramakrishna Sistla

AIMS Doxorubicin is a widely used anthracycline derivative anticancer drug. Unfortunately, the clinical use of doxorubicin has the serious drawback of cardiotoxicity. In this study, we investigated whether baicalein, a bioflavonoid, can prevent doxorubicin-induced cardiotoxicity in vivo and we delineated the possible underlying mechanisms. MAIN METHODS Male BALB/c mice were treated with either intraperitoneal doxorubicin (15 mg/kg divided into three equal doses for 15 days) and/or oral baicalein (25 and 50 mg/kg for 15 days). Serum markers of cardiac injury, histology of heart, parameters related to myocardial oxidative stress, apoptosis and inflammation were investigated. KEY FINDINGS Treatment with baicalein reduced doxorubicin-induced elevation of serum creatine kinase-MB isoenzyme (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and ameliorated the histopathological damage. Baicalein restored the doxorubicin-induced decrease in both enzymatic and non-enzymatic myocardial antioxidants and increased the myocardial expression of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Further studies showed that baicalein could inverse the Bax/Bcl-2 ratio, suppress doxorubicin-induced p53, cleaved caspase-3 and PARP expression and prevented doxorubicin-induced DNA damage. Baicalein treatment also interferes with doxorubicin-induced myocardial NF-κB signaling through inhibition of IκBα phosphorylation and nuclear translocation of p65 subunit. Doxorubicin elevated iNOS and nitrites levels were also significantly decreased in baicalein treated mice. However, we did not find any significant change (p>0.05) in the myocardial TNF-α and IL-6 levels in control and treated animals. SIGNIFICANCE Our finding suggests that baicalein might be a promising molecule for the prevention of doxorubicin-induced cardiotoxicity.


Journal of Biomaterials Applications | 2013

Evaluation of nano-biphasic calcium phosphate ceramics for bone tissue engineering applications: In vitro and preliminary in vivo studies

Sujatha Reddy; Samiksha Wasnik; Avijit Guha; Jerald Mahesh Kumar; Arvind Sinha; Shashi Singh

Reconstruction of critical sized bone injuries is a major problem that continues to inspire the design of new materials and grafts. Natural ceramics (hydroxyapatite (HA) coralline HA, or synthetic HA) and β-tricalcium phosphate (β-TCP) are being explored for use as scaffolds in bone tissue engineering, among several other materials. The present study evaluated the bone forming capacity of nanosize bioceramics synthesized in situ in poly-vinyl alcohol (PVA) with different ratios of HA and β-TCP; the Ca/P ratio was 1.62 for bioceramic P1, 1.60 for P2 and 1.58 for P3. Further osteogenesis in vitro with mesenchymal stem cells (MSC) acquired from different sources for osteogenesis in vitro and their bone healing properties in vivo were also evaluated. MSC isolated from human placenta, Wharton’s jelly from umbilical cord, fetal bone marrow and adipose tissue, cultured in the presence of nanosize bioceramic particles, were monitored for osteogenic differentiation. Placental cells showed the best osteogenic potential of the different MSC studied on the basis of expression of osteogenic markers. Complete regeneration of the damaged region was observed in vivo when MSC derived from placenta were used with nanoceramic (Ca/P ratio 1.58) in the experimental defect created in the femur of Wistar rats. Even small variation in the Ca/P ratio can alter the outcome of tissue constructs.


Life Sciences | 2014

Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: possible involvement of mitochondrial dysfunction and apoptosis.

Bidya Dhar Sahu; Harika Anubolu; Meghana Koneru; Jerald Mahesh Kumar; Madhusudana Kuncha; Shyam Sunder Rachamalla; Ramakrishna Sistla

AIMS Preventive and/or therapeutic interventions using natural products for ischemic heart disease have gained considerable attention worldwide. This study investigated the cardioprotective effect and possible mechanism of embelin, a major constituent of Embelia ribes Burm, using isoproterenol (ISO)-induced myocardial infarction model in rats. MATERIALS AND METHODS Rats were pretreated for three days with embelin (50mg/kg, p.o) before inducing myocardial injury by administration of ISO (85 mg/kg) subcutaneously at an interval of 24h for 2 consecutive days. Serum was analyzed for cardiac specific injury biomarkers, lipids and lipoprotein content. Heart tissues were isolated and were used for histopathology, antioxidant and mitochondrial respiratory enzyme activity assays and western blot analysis. KEY FINDINGS Results showed that pretreatment with embelin significantly decreased the elevated levels of serum specific cardiac injury biomarkers (CK-MB, LDH and AST), serum levels of lipids and lipoproteins and histopathological changes when compared to ISO-induced controls. Exploration of the underlying mechanisms of embelin action revealed that embelin pretreatment restored the myocardial mitochondrial respiratory enzyme activities (NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity), strengthened antioxidant status and attenuated ISO-induced myocardial lipid peroxidation. Immunoblot analysis revealed that embelin interrupted mitochondria dependent apoptotic damage by increasing the myocardial expression of Bcl-2 and downregulating the expression of Bax, cytochrome c, cleaved-caspase-3 & 9 and PARP. Histopathology findings further strengthened the cardioprotective findings of embelin. SIGNIFICANCE Result suggested that embelin may have a potential benefit in preventing ischemic heart disease like myocardial infarction.


Inorganic Chemistry | 2013

Biological studies of chalcogenolato-bridged dinuclear half-sandwich complexes.

Justin P. Johnpeter; Gajendra Gupta; Jerald Mahesh Kumar; Gunda Srinivas; Narayana Nagesh; Bruno Therrien

A series of cationic chalcogenolato-bridged diruthenium complexes [(η(6)-p-MeC6H4Pr(i))2Ru2(μ-EC6H5)3](+) (E = S, 1; E = Se, 2; E = Te, 3) has been obtained in ethanol from the reaction of (η(6)-p-MeC6H4Pr(i))2Ru2(μ-Cl)2Cl2 with benzenethiol, benzeneselenol, and sodium tellurophenolate, respectively. The thiolato and selenolato derivatives are isolated in good yield as the chloride salts, while the tellurolato analogue is isolated as the hexafluorophosphate salt. Similarly, the dinuclear pentamethylcyclopentadienyl (C5Me5) rhodium and iridium complexes (η(5)-C5Me5)2M2(μ-Cl)2Cl2 react with benzenethiol, benzeneselenol, and sodium tellurophenolate in ethanol to give the corresponding cationic dinuclear complexes of the general formula [(η(5)-C5Me5)2M2(μ-EC6H5)3](+) (M = Rh, E = S, 4; E = Se, 5; E = Te, 6; M = Ir, E = S, 7; E = Se, 8; E = Te, 9). In addition, cationic dinuclear complexes with mixed thiolato-selenolato and thiolato-tellurolato bridges have been prepared, [(η(6)-p-MeC6H4Pr(i))2Ru2(μ-EC6H5)(μ-SCH2C6H4-p-Bu(t))2](+) (E = Se, 10; E = Te, 11) and [(η(5)-C5Me5)2M2(μ-EC6H5)(μ-SCH2C6H5)2](+) (M = Rh, E = Se, 12; E = Te, 13; M = Ir, E = Se, 14; E = Te, 15), starting from the neutral dinuclear complexes (η(6)-p-MeC6H4Pr(i))2Ru2Cl2(μ-SCH2C6H4-p-Bu(t))2 and (η(5)-C5Me5)2M2Cl2(μ-SCH2C6H5)2. All complexes are highly cytotoxic showing activity in the submicromolar range. The nature of the chalcogenolato bridges seems to have an impact on the activity, while the nature of the metal center plays a minor role. Among the complexes tested, the dinuclear complexes 1, 4, and 7 with the thiolato bridges show the highest activity on cancer cells and the best affinity for CT-DNA as demonstrated by cell biology and biophysical experiments.


Molecular Therapy | 2009

Selective cancer targeting via aberrant behavior of cancer cell-associated glucocorticoid receptor.

Amarnath Mukherjee; Kumar P Narayan; Krishnendu Pal; Jerald Mahesh Kumar; Nandini Rangaraj; Shasi V. Kalivendi; Rajkumar Banerjee

Glucocorticoid receptors (GRs) are ubiquitous, nuclear hormone receptors residing in cell types of both cancer and noncancerous origin. It is not known whether cancer cell-associated GR alone can be selectively manipulated for delivery of exogenous genes to its nucleus for eliciting anticancer effect. We find that GR ligand, dexamethasone (Dex) in association with cationic lipoplex (termed as targeted lipoplex) could selectively manipulate GR in cancer cells alone for the delivery of transgenes in the nucleus, a phenomenon that remained unobserved in normal cells. The targeted lipoplex (i) showed GR-targeted transfections in all cancer cells experimented (P < 0.01), (ii) significantly diminished transfection in cancer cells when GR is downregulated (P < 0.01), and (iii) elicited specific nuclear translocation of targeted lipoplex in cancer cells, followed by upregulated transactivation of glucocorticoid response element (GRE)- promoted gene. Using anticancer gene, targeted lipoplex induced significant tumor growth retardation in mice in comparison to different control groups (P < 0.05). Interestingly, cell surface-associated Hsp90 in cancer cells assisted the intracellular uptake of GR-targeted lipoplex. Moreover, selective inhibition of Hsp90 in noncancer cells resulted in cancer cell-like, aberrant, GR activation. The current study discovers a therapeutically important, unique property of cancer cell associated-GR that may be linked to a compromised role of Hsp90.Molecular Therapy (2009) 17 4, 623-631 doi:10.1038/mt.2009.4.


Scientific Reports | 2016

Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis

Santosh Karnewar; Sathish Babu Vasamsetti; Raja Gopoju; Anantha Koteswararao Kanugula; Sai Krishna Ganji; Sripadi Prabhakar; Nandini Rangaraj; Nitin Tupperwar; Jerald Mahesh Kumar; Srigiridhar Kotamraju

Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE−/− mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE−/− mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.

Collaboration


Dive into the Jerald Mahesh Kumar's collaboration.

Top Co-Authors

Avatar

Ramakrishna Sistla

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Bidya Dhar Sahu

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Madhusudana Kuncha

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Meghana Koneru

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Perumal Nagarajan

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Gopal Pande

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Narayana Nagesh

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Rajkumar Banerjee

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunda Srinivas

Centre for Cellular and Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge