Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bidya Dhar Sahu is active.

Publication


Featured researches published by Bidya Dhar Sahu.


Phytomedicine | 2013

Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage

Bidya Dhar Sahu; Madhusudana Kuncha; G. Jeevana Sindhura; Ramakrishna Sistla

Nephrotoxicity is an important complication in cancer patients undergoing cisplatin therapy. Oxidative stress, inflammation and apoptosis/necrosis are the major patho-mechanisms of cisplatin induced nephrotoxicity. In the present study, hesperidin, a naturally-occurring bioflavonoid has been demonstrated to have protective effect on cisplatin-induced renal injury in rats. Cisplatin intoxication resulted in structural and functional renal impairment which was revealed by massive histopathological changes and elevated blood urea nitrogen and serum creatinine levels, respectively. Renal injury was associated with oxidative stress/lipid peroxidation as evident by increased reactive oxygen species (ROS) and malondialdehyde (MDA) formation with decreased levels of antioxidants such as reduced glutathione, vitamin C, catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase. Cisplatin administration also triggered inflammatory response in rat kidneys by inducing pro-inflammatory cytokine, TNF-α, with the increased expression of myeloperoxidase (MPO). Furthermore, cisplatin increased the activity of caspase-3 and DNA damage with decreased tissue nitric oxide levels. Hesperidin treatment significantly attenuated the cisplatin-induced oxidative stress/lipid peroxidation, inflammation (infiltration of leukocytes and pro-inflammatory cytokine), apoptosis/necrosis (caspase-3 activity with DNA damage) as well as increased expression of nitric oxide in the kidney and improved renal function. Thus, our results suggest that hesperidin co-administration may serve as a novel and promising preventive strategy against cisplatin-induced nephrotoxicity.


PLOS ONE | 2014

Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant Defence

Bidya Dhar Sahu; Anil Kumar Kalvala; Meghana Koneru; Jerald Mahesh Kumar; Madhusudana Kuncha; Shyam Sunder Rachamalla; Ramakrishna Sistla

Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.


Food and Chemical Toxicology | 2011

Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity.

Bidya Dhar Sahu; Kiran Kumar Reddy Rentam; Uday Kumar Putcha; Madhusudana Kuncha; Ganga Modi Naidu Vegi; Ramakrishna Sistla

Nephrotoxicity is one of the serious dose limiting side effects of cisplatin when used in the treatment of various malignant conditions. Accumulating evidence suggests that oxidative stress caused by free radicals and apoptosis of renal cells contributes to the pathogenesis of cisplatin-induced nephrotoxicity. Present study was aimed to explore the effect of carnosic acid, a potent antioxidant, against cisplatin induced oxidative stress and nephrotoxicity in rats. A single dose of cisplatin (7.5mg/kg) caused marked renal damage, characterized by a significant (P<0.05) increase in serum creatinine, blood urea nitrogen (BUN) and relative weight of kidney with higher kidney MDA (malondialdehyde), tROS (total reactive oxygen species), caspase 3, GSH (reduced glutathione) levels and lowered tissue nitrite, SOD (superoxide dismutase), CAT (catalase), GSH-Px (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) levels compared to normal control. Carnosic acid treatment significantly (P<0.05) attenuated the increase in lipid peroxidation, caspase-3 and ROS generation and enhanced the levels of reduced glutathione, tissue nitrite level and activities of SOD, CAT, GSH-Px, GR and GST compared to cisplatin control. The present study demonstrates that carnosic acid has a protective effect on cisplatin induced experimental nephrotoxicity and is attributed to its potent antioxidant and antiapoptotic properties.


Toxicology and Applied Pharmacology | 2014

Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

Bidya Dhar Sahu; Srujana Tatireddy; Meghana Koneru; Roshan M. Borkar; Jerald Mahesh Kumar; Madhusudana Kuncha; R. Srinivas; R Shyam Sunder; Ramakrishna Sistla

Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney.


PLOS ONE | 2015

Baicalein, a Bioflavonoid, Prevents Cisplatin-Induced Acute Kidney Injury by Up-Regulating Antioxidant Defenses and Down-Regulating the MAPKs and NF-κB Pathways

Bidya Dhar Sahu; Jerald Mahesh Kumar; Ramakrishna Sistla

Acute renal failure is a serious complication of the anticancer drug cisplatin. The potential role of baicalein, a naturally occurring bioflavonoid on cisplatin-induced renal injury is unknown. Here, we assessed the effect of baicalein against a murine model of cisplatin-induced acute renal failure and investigated the underlying possible mechanisms. Renal function, kidney histology, inflammation, oxidative stress, renal mitochondrial function, proteins involved in apoptosis, nuclear translocation of Nrf2 and effects on intracellular signaling pathways such as MAPKs, and NF-κB were assessed. Pretreatment with baicalein ameliorated the cisplatin-induced renal oxidative stress, apoptosis and inflammation and improved kidney injury and function. Baicalein inhibited the cisplatin-induced expression of iNOS, TNF-α, IL-6 and mononuclear cell infiltration and concealed redox-sensitive transcription factor NF-κB activation via reduced DNA-binding activity, IκBα phosphorylation and p65 nuclear translocation in kidneys. Further studies demonstrated baicalein markedly attenuated cisplatin-induced p38 MAPK, ERK1/2 and JNK phosphorylation in kidneys. Baicalein also restored the renal antioxidants and increased the amount of total and nuclear accumulation of Nrf2 and downstream target protein, HO-1 in kidneys. Moreover, baicalein preserved mitochondrial respiratory enzyme activities and inhibited cisplatin-induced apoptosis by suppressing p53 expression, Bax/Bcl-2 imbalance, cytochrome c release and activation of caspase-9, caspase-3 and PARP. Our findings suggest that baicalein ameliorates cisplatin-induced renal damage through up-regulation of antioxidant defense mechanisms and down regulation of the MAPKs and NF-κB signaling pathways.


Life Sciences | 2016

Baicalein alleviates doxorubicin-induced cardiotoxicity via suppression of myocardial oxidative stress and apoptosis in mice.

Bidya Dhar Sahu; Jerald Mahesh Kumar; Madhusudana Kuncha; Roshan M. Borkar; R. Srinivas; Ramakrishna Sistla

AIMS Doxorubicin is a widely used anthracycline derivative anticancer drug. Unfortunately, the clinical use of doxorubicin has the serious drawback of cardiotoxicity. In this study, we investigated whether baicalein, a bioflavonoid, can prevent doxorubicin-induced cardiotoxicity in vivo and we delineated the possible underlying mechanisms. MAIN METHODS Male BALB/c mice were treated with either intraperitoneal doxorubicin (15 mg/kg divided into three equal doses for 15 days) and/or oral baicalein (25 and 50 mg/kg for 15 days). Serum markers of cardiac injury, histology of heart, parameters related to myocardial oxidative stress, apoptosis and inflammation were investigated. KEY FINDINGS Treatment with baicalein reduced doxorubicin-induced elevation of serum creatine kinase-MB isoenzyme (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and ameliorated the histopathological damage. Baicalein restored the doxorubicin-induced decrease in both enzymatic and non-enzymatic myocardial antioxidants and increased the myocardial expression of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Further studies showed that baicalein could inverse the Bax/Bcl-2 ratio, suppress doxorubicin-induced p53, cleaved caspase-3 and PARP expression and prevented doxorubicin-induced DNA damage. Baicalein treatment also interferes with doxorubicin-induced myocardial NF-κB signaling through inhibition of IκBα phosphorylation and nuclear translocation of p65 subunit. Doxorubicin elevated iNOS and nitrites levels were also significantly decreased in baicalein treated mice. However, we did not find any significant change (p>0.05) in the myocardial TNF-α and IL-6 levels in control and treated animals. SIGNIFICANCE Our finding suggests that baicalein might be a promising molecule for the prevention of doxorubicin-induced cardiotoxicity.


Life Sciences | 2014

Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: possible involvement of mitochondrial dysfunction and apoptosis.

Bidya Dhar Sahu; Harika Anubolu; Meghana Koneru; Jerald Mahesh Kumar; Madhusudana Kuncha; Shyam Sunder Rachamalla; Ramakrishna Sistla

AIMS Preventive and/or therapeutic interventions using natural products for ischemic heart disease have gained considerable attention worldwide. This study investigated the cardioprotective effect and possible mechanism of embelin, a major constituent of Embelia ribes Burm, using isoproterenol (ISO)-induced myocardial infarction model in rats. MATERIALS AND METHODS Rats were pretreated for three days with embelin (50mg/kg, p.o) before inducing myocardial injury by administration of ISO (85 mg/kg) subcutaneously at an interval of 24h for 2 consecutive days. Serum was analyzed for cardiac specific injury biomarkers, lipids and lipoprotein content. Heart tissues were isolated and were used for histopathology, antioxidant and mitochondrial respiratory enzyme activity assays and western blot analysis. KEY FINDINGS Results showed that pretreatment with embelin significantly decreased the elevated levels of serum specific cardiac injury biomarkers (CK-MB, LDH and AST), serum levels of lipids and lipoproteins and histopathological changes when compared to ISO-induced controls. Exploration of the underlying mechanisms of embelin action revealed that embelin pretreatment restored the myocardial mitochondrial respiratory enzyme activities (NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity), strengthened antioxidant status and attenuated ISO-induced myocardial lipid peroxidation. Immunoblot analysis revealed that embelin interrupted mitochondria dependent apoptotic damage by increasing the myocardial expression of Bcl-2 and downregulating the expression of Bax, cytochrome c, cleaved-caspase-3 & 9 and PARP. Histopathology findings further strengthened the cardioprotective findings of embelin. SIGNIFICANCE Result suggested that embelin may have a potential benefit in preventing ischemic heart disease like myocardial infarction.


Chemico-Biological Interactions | 2014

Chromium-induced nephrotoxicity and ameliorative effect of carvedilol in rats: Involvement of oxidative stress, apoptosis and inflammation.

Bidya Dhar Sahu; Meghana Koneru; Shriharsh R. Bijargi; Anudeep Kota; Ramakrishna Sistla

Nephrotoxicity is a major adverse effect of chromium poisoning. In the present study, we investigated the potential renoprotective effect and underlying mechanisms of carvedilol, a non-specific β-adrenergic blocker using rat model of potassium dichromate-induced nephrotoxicity. Rats were pretreated with carvedilol (10mg/kg) for 21days. A single subcutaneous injection of potassium dichromate (15mg/kg, s.c.) resulted in a significant increase in the levels of blood urea nitrogen and serum creatinine, markers related to oxidative stress, nitrosative stress, apoptosis and inflammation accompanied with histopathological changes in kidney tissues. Exploration of the underlying renoprotective mechanisms of carvedilol revealed that carvedilol attenuated nuclear translocation and DNA binding activity of NF-κB (p65) in kidney tissues. The serum levels of TNF-α and the renal expression of iNOS and tissue nitrites were significantly decreased in carvedilol plus potassium dichromate administered rats. Carvedilol pretreatment significantly attenuated the potassium dichromate-induced DNA damage, decreased the p53, Bax and cleaved caspase-3 expression and increased the Bcl-2 expression. Moreover, pretreatment with carvedilol significantly restored the renal tissue antioxidant and mitochondrial respiratory enzyme activities and decreased the elevated lipid peroxidation biomarkers to normal. These results were further supported and confirmed by histopathological findings. In conclusion, the findings of the present study demonstrated that carvedilol is an effective chemoprotectant against potassium dichromate-induced nephrotoxicity in rats.


Experimental and Toxicologic Pathology | 2013

Effect of metformin against cisplatin induced acute renal injury in rats: a biochemical and histoarchitectural evaluation.

Bidya Dhar Sahu; Madhusudana Kuncha; Uday Kumar Putcha; Ramakrishna Sistla

Although cisplatin has been a mainstay for cancer therapy, its use is limited mainly because of nephrotoxicity. Accumulating literature suggest the antioxidant and cytoprotective effect of metformin, a first line antidiabetic drug. With this background, we investigated the effect of metformin on the cisplatin induced nephrotoxicity in rats. A single injection of cisplatin (7.5 mg/kg, i.p.) caused marked renal damage, characterized by a significant increase in blood urea nitrogen (BUN), serum creatinine (Cr) and abnormal histo-architecture of kidney. These were accompanied by significant elevation of malondialdehyde (MDA), total reactive oxygen species (tROS) and caspase-3 levels and decreased antioxidant levels. Metformin treatment significantly attenuated the increase in malondialdehyde and tROS generation and restores the decrease in both enzymatic and non-enzymatic antioxidants. However metformin treatment did not prevent the cisplatin induced renal injury as there was no significant difference of renal function parameters (BUN and Cr), kidney histopathology as well as caspase-3 activity between cisplatin per se and metformin plus cisplatin treated rats. Histopathology studies revealed that similar glomerular and tubular pathological architecture in both cisplatin per se and cisplatin plus metformin group. In conclusion, the present study demonstrated that metformin is not an adjuvant drug to treat nephrotoxicity associated with cisplatin therapy.


Molecular and Cellular Biochemistry | 2014

Carnosic acid promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress and apoptosis in mice

Bidya Dhar Sahu; Uday Kumar Putcha; Madhusudana Kuncha; Shyam Sunder Rachamalla; Ramakrishna Sistla

Carnosic acid is a well-known antioxidant. Recently, it has been identified as modulator of nuclear factor erythroid 2-related factor 2 (Nrf2). The effect of carnosic acid in the context of cardiovascular disorders has not been studied. In the present study, we investigated the beneficial effect and the underlying cardioprotective mechanism of carnosic acid by using mouse model of isoproterenol (ISO)-induced myocardial stress. Elevated serum levels of Troponin I, CK-MB, LDH, SGOT and SGPT, and myofibrillar degeneration with necrotic damage, and the presence of epicardial inflammatory infiltrate (H & E staining) confirmed the ISO-induced myocardial stress. Myocardial content of vitamin C, reduced glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, NAD(P)H: quinine oxidoreductase 1, superoxide dismutase, catalase, nuclear translocation of Nrf2 and protein expression heme oxygenase-1 were evaluated. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and myocardial expression of cleaved caspase-3, caspase-9, p53, Bax, and Bcl-2 were investigated to assess the apoptotic cell death. Pretreatment with carnosic acid attenuated ISO-induced elevated serum levels of Troponin I, CK-MB, LDH, SGOT and SGPT, and histopathological alterations in heart. Moreover, carnosic acid enhanced the nuclear translocation of Nrf2 and up-regulated the phase II/antioxidant enzyme activities. Furthermore, TUNEL assay and apoptosis-related protein analysis indicated that carnosic acid prevented ISO-induced cardiomyocyte apoptosis. Isoproterenol-induced myocardial lipid peroxidation and protein oxidation were also significantly decreased by carnosic acid pretreatment. The overall results clearly indicate that therapeutic application of carnosic acid might be beneficial in treating cardiovascular disorders.

Collaboration


Dive into the Bidya Dhar Sahu's collaboration.

Top Co-Authors

Avatar

Ramakrishna Sistla

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Madhusudana Kuncha

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Jerald Mahesh Kumar

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Meghana Koneru

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Halley Gora Ravuri

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

R. Srinivas

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Roshan M. Borkar

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Salma Mukhtar Mir

Indian Institute of Chemical Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge