Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Madhusudana Kuncha is active.

Publication


Featured researches published by Madhusudana Kuncha.


Phytomedicine | 2013

Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage

Bidya Dhar Sahu; Madhusudana Kuncha; G. Jeevana Sindhura; Ramakrishna Sistla

Nephrotoxicity is an important complication in cancer patients undergoing cisplatin therapy. Oxidative stress, inflammation and apoptosis/necrosis are the major patho-mechanisms of cisplatin induced nephrotoxicity. In the present study, hesperidin, a naturally-occurring bioflavonoid has been demonstrated to have protective effect on cisplatin-induced renal injury in rats. Cisplatin intoxication resulted in structural and functional renal impairment which was revealed by massive histopathological changes and elevated blood urea nitrogen and serum creatinine levels, respectively. Renal injury was associated with oxidative stress/lipid peroxidation as evident by increased reactive oxygen species (ROS) and malondialdehyde (MDA) formation with decreased levels of antioxidants such as reduced glutathione, vitamin C, catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase. Cisplatin administration also triggered inflammatory response in rat kidneys by inducing pro-inflammatory cytokine, TNF-α, with the increased expression of myeloperoxidase (MPO). Furthermore, cisplatin increased the activity of caspase-3 and DNA damage with decreased tissue nitric oxide levels. Hesperidin treatment significantly attenuated the cisplatin-induced oxidative stress/lipid peroxidation, inflammation (infiltration of leukocytes and pro-inflammatory cytokine), apoptosis/necrosis (caspase-3 activity with DNA damage) as well as increased expression of nitric oxide in the kidney and improved renal function. Thus, our results suggest that hesperidin co-administration may serve as a novel and promising preventive strategy against cisplatin-induced nephrotoxicity.


Nutrition & Metabolism | 2011

Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats

Raju Padiya; Tarak Nath Khatua; Pankaj K. Bagul; Madhusudana Kuncha; Sanjay K. Banerjee

BackgroundType 2 diabetes mellitus, characterized by peripheral insulin resistance, is a major lifestyle disorder of the 21st Century. Raw garlic homogenate has been reported to reduce plasma glucose levels in animal models of type 1 diabetes mellitus. However, no specific studies have been conducted to evaluate the effect of raw garlic on insulin resistance or type 2 diabetes mellitus. This study was designed to investigate the effect of raw garlic on fructose induced insulin resistance, associated metabolic syndrome and oxidative stress in diabetic rats.MethodsMale Sprague Dawley rats weighing 200-250 gm body weight were divided into 3 groups (n = 7 per group) and fed diet containing 65% cornstarch (Control group) and 65% fructose (Diabetic group) for 8 weeks. The third group (Dia+Garl group) was fed both 65% fructose and raw garlic homogenate (250 mg/kg/day) for 8 weeks. Whole garlic cloves were homogenized with water to make a fresh paste each day.ResultsAt the end of 8 weeks, serum glucose, insulin, triglyceride and uric acid levels, as well as insulin resistance, as measured by glucose tolerance test, were significantly (p < 0.01) increased in fructose fed rats (Diabetic group) when compared to the cornstarch fed (Control) rats. Administration of raw garlic to fructose fed rats (Dia+Garl group) significantly (p < 0.05) reduced serum glucose, insulin, triglyceride and uric acid levels, as well as insulin resistance when compared with fructose fed rats. Garlic also normalised the increased serum levels of nitric oxide (NO) and decreased levels of hydrogen sulphide (H2S) after fructose feeding. Although body weight gain and serum glycated haemoglobin levels of fructose fed rats (Diabetic group) were not significantly different from control rats, significant (p < 0.05) reduction of these parameters was observed in fructose fed rats after garlic administration (Dia+Garl group). Significant (p < 0.05) increase in TBARS and decrease in GSH was observed in diabetic liver. Catalase was not significantly affected in any of the groups. Administration of raw garlic homogenate normalised both hepatic TBARS and GSH levels.ConclusionsOur study demonstrates that raw garlic homogenate is effective in improving insulin sensitivity while attenuating metabolic syndrome and oxidative stress in fructose-fed rats.


PLOS ONE | 2014

Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant Defence

Bidya Dhar Sahu; Anil Kumar Kalvala; Meghana Koneru; Jerald Mahesh Kumar; Madhusudana Kuncha; Shyam Sunder Rachamalla; Ramakrishna Sistla

Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.


Food and Chemical Toxicology | 2011

Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity.

Bidya Dhar Sahu; Kiran Kumar Reddy Rentam; Uday Kumar Putcha; Madhusudana Kuncha; Ganga Modi Naidu Vegi; Ramakrishna Sistla

Nephrotoxicity is one of the serious dose limiting side effects of cisplatin when used in the treatment of various malignant conditions. Accumulating evidence suggests that oxidative stress caused by free radicals and apoptosis of renal cells contributes to the pathogenesis of cisplatin-induced nephrotoxicity. Present study was aimed to explore the effect of carnosic acid, a potent antioxidant, against cisplatin induced oxidative stress and nephrotoxicity in rats. A single dose of cisplatin (7.5mg/kg) caused marked renal damage, characterized by a significant (P<0.05) increase in serum creatinine, blood urea nitrogen (BUN) and relative weight of kidney with higher kidney MDA (malondialdehyde), tROS (total reactive oxygen species), caspase 3, GSH (reduced glutathione) levels and lowered tissue nitrite, SOD (superoxide dismutase), CAT (catalase), GSH-Px (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) levels compared to normal control. Carnosic acid treatment significantly (P<0.05) attenuated the increase in lipid peroxidation, caspase-3 and ROS generation and enhanced the levels of reduced glutathione, tissue nitrite level and activities of SOD, CAT, GSH-Px, GR and GST compared to cisplatin control. The present study demonstrates that carnosic acid has a protective effect on cisplatin induced experimental nephrotoxicity and is attributed to its potent antioxidant and antiapoptotic properties.


Toxicology and Applied Pharmacology | 2014

Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

Bidya Dhar Sahu; Srujana Tatireddy; Meghana Koneru; Roshan M. Borkar; Jerald Mahesh Kumar; Madhusudana Kuncha; R. Srinivas; R Shyam Sunder; Ramakrishna Sistla

Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles

Vinay Kumar Venishetty; Rojarani Komuravelli; Madhusudana Kuncha; Ramakrishna Sistla; Prakash V. Diwan

UNLABELLED Docetaxel is used in the treatment of many types of cancer, but its entry into the brain is restricted by p-glycoprotein (p-gp) efflux. A potential drug-drug interaction exists between docetaxel and ketoconazole because both agents are metabolized hepatically by the cytochrome P-450 system, and ketoconazole can inhibit p-gp efflux of docetaxel at blood brain barrier. Hence, these two drugs were loaded in solid lipid nanoparticles (SLNPs) and surface of these NPs were modified with folic acid for brain targeting. These NPs were characterized for particle size, zeta potential, entrapment efficiency, in vitro drug release, cytotoxicity, and cell uptake in brain endothelial cell lines. Plasma and brain pharmacokinetics have shown increased brain uptake of docetaxel with surface-modified dual drug-loaded SLNPs. Brain permeation coefficient (K(in)) of folate-grafted docetaxel and ketoconazole loaded SLNPs was 44 times higher than that of Taxotere. Hence, these NPs were suitable for the delivery of lipophilic anticancer drugs to the brain. FROM THE CLINICAL EDITOR In this paper, successful delivery of docetaxel and ketoconazole is reported using solid lipid nanoparticles surface modified with folic acid for brain targeting, which may pave the way to optimized clinical applications of lipophilic anticancer drugs to the brain.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

β-Hydroxybutyric acid grafted solid lipid nanoparticles: A novel strategy to improve drug delivery to brain

Vinay Kumar Venishetty; Ramakrishna Samala; Rojarani Komuravelli; Madhusudana Kuncha; Ramakrishna Sistla; Prakash V. Diwan

UNLABELLED Delivery of drugs to brain is an elusive task in the therapy of many serious neurological diseases. With the aim to create a novel formulation to enhance the drug uptake to brain, betreliesoxybutyric acid (HBA) grafted docetaxel loaded solid lipid nanoparticles (HD-SLNs) were explored. Transportation of HD-SLNs relies on the transport of novel ligand, HBA, by monocarboxylic acid transporter (MCT1). Expression of MCT1 transporter on brain endothelial cells (bEnd cells) was studied using immunocytochemistry. Stearylamine-HBA conjugate was used to modify the surface of SLNs and it was confirmed using XPS (X-Ray Photon Spectroscopy) analysis. In vitro release studies revealed the controlled release of drug from HD-SLNs. Cytotoxicity and cell uptake studies revealed the increased uptake of docetaxel with HD-SLNs. Mechanism involved in the uptake of HD-SLNs was studied in bEnd cells by saturating MCT1 with excess HBA. Pharmacokinetic and brain distribution demonstrated increased docetaxel concentrations in brain compared with Taxotere®. FROM THE CLINICAL EDITOR The authors of this study demonstrate enhanced drug delivery to the brain using a novel formulation of beta-hydroxybutyric acid grafted docetaxel loaded solid lipid nanoparticles. The results show increased uptake of docetaxel compared with Taxotere.


Life Sciences | 2016

Baicalein alleviates doxorubicin-induced cardiotoxicity via suppression of myocardial oxidative stress and apoptosis in mice.

Bidya Dhar Sahu; Jerald Mahesh Kumar; Madhusudana Kuncha; Roshan M. Borkar; R. Srinivas; Ramakrishna Sistla

AIMS Doxorubicin is a widely used anthracycline derivative anticancer drug. Unfortunately, the clinical use of doxorubicin has the serious drawback of cardiotoxicity. In this study, we investigated whether baicalein, a bioflavonoid, can prevent doxorubicin-induced cardiotoxicity in vivo and we delineated the possible underlying mechanisms. MAIN METHODS Male BALB/c mice were treated with either intraperitoneal doxorubicin (15 mg/kg divided into three equal doses for 15 days) and/or oral baicalein (25 and 50 mg/kg for 15 days). Serum markers of cardiac injury, histology of heart, parameters related to myocardial oxidative stress, apoptosis and inflammation were investigated. KEY FINDINGS Treatment with baicalein reduced doxorubicin-induced elevation of serum creatine kinase-MB isoenzyme (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and ameliorated the histopathological damage. Baicalein restored the doxorubicin-induced decrease in both enzymatic and non-enzymatic myocardial antioxidants and increased the myocardial expression of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Further studies showed that baicalein could inverse the Bax/Bcl-2 ratio, suppress doxorubicin-induced p53, cleaved caspase-3 and PARP expression and prevented doxorubicin-induced DNA damage. Baicalein treatment also interferes with doxorubicin-induced myocardial NF-κB signaling through inhibition of IκBα phosphorylation and nuclear translocation of p65 subunit. Doxorubicin elevated iNOS and nitrites levels were also significantly decreased in baicalein treated mice. However, we did not find any significant change (p>0.05) in the myocardial TNF-α and IL-6 levels in control and treated animals. SIGNIFICANCE Our finding suggests that baicalein might be a promising molecule for the prevention of doxorubicin-induced cardiotoxicity.


Life Sciences | 2014

Cardioprotective effect of embelin on isoproterenol-induced myocardial injury in rats: possible involvement of mitochondrial dysfunction and apoptosis.

Bidya Dhar Sahu; Harika Anubolu; Meghana Koneru; Jerald Mahesh Kumar; Madhusudana Kuncha; Shyam Sunder Rachamalla; Ramakrishna Sistla

AIMS Preventive and/or therapeutic interventions using natural products for ischemic heart disease have gained considerable attention worldwide. This study investigated the cardioprotective effect and possible mechanism of embelin, a major constituent of Embelia ribes Burm, using isoproterenol (ISO)-induced myocardial infarction model in rats. MATERIALS AND METHODS Rats were pretreated for three days with embelin (50mg/kg, p.o) before inducing myocardial injury by administration of ISO (85 mg/kg) subcutaneously at an interval of 24h for 2 consecutive days. Serum was analyzed for cardiac specific injury biomarkers, lipids and lipoprotein content. Heart tissues were isolated and were used for histopathology, antioxidant and mitochondrial respiratory enzyme activity assays and western blot analysis. KEY FINDINGS Results showed that pretreatment with embelin significantly decreased the elevated levels of serum specific cardiac injury biomarkers (CK-MB, LDH and AST), serum levels of lipids and lipoproteins and histopathological changes when compared to ISO-induced controls. Exploration of the underlying mechanisms of embelin action revealed that embelin pretreatment restored the myocardial mitochondrial respiratory enzyme activities (NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity), strengthened antioxidant status and attenuated ISO-induced myocardial lipid peroxidation. Immunoblot analysis revealed that embelin interrupted mitochondria dependent apoptotic damage by increasing the myocardial expression of Bcl-2 and downregulating the expression of Bax, cytochrome c, cleaved-caspase-3 & 9 and PARP. Histopathology findings further strengthened the cardioprotective findings of embelin. SIGNIFICANCE Result suggested that embelin may have a potential benefit in preventing ischemic heart disease like myocardial infarction.


Experimental and Toxicologic Pathology | 2013

Effect of metformin against cisplatin induced acute renal injury in rats: a biochemical and histoarchitectural evaluation.

Bidya Dhar Sahu; Madhusudana Kuncha; Uday Kumar Putcha; Ramakrishna Sistla

Although cisplatin has been a mainstay for cancer therapy, its use is limited mainly because of nephrotoxicity. Accumulating literature suggest the antioxidant and cytoprotective effect of metformin, a first line antidiabetic drug. With this background, we investigated the effect of metformin on the cisplatin induced nephrotoxicity in rats. A single injection of cisplatin (7.5 mg/kg, i.p.) caused marked renal damage, characterized by a significant increase in blood urea nitrogen (BUN), serum creatinine (Cr) and abnormal histo-architecture of kidney. These were accompanied by significant elevation of malondialdehyde (MDA), total reactive oxygen species (tROS) and caspase-3 levels and decreased antioxidant levels. Metformin treatment significantly attenuated the increase in malondialdehyde and tROS generation and restores the decrease in both enzymatic and non-enzymatic antioxidants. However metformin treatment did not prevent the cisplatin induced renal injury as there was no significant difference of renal function parameters (BUN and Cr), kidney histopathology as well as caspase-3 activity between cisplatin per se and metformin plus cisplatin treated rats. Histopathology studies revealed that similar glomerular and tubular pathological architecture in both cisplatin per se and cisplatin plus metformin group. In conclusion, the present study demonstrated that metformin is not an adjuvant drug to treat nephrotoxicity associated with cisplatin therapy.

Collaboration


Dive into the Madhusudana Kuncha's collaboration.

Top Co-Authors

Avatar

Ramakrishna Sistla

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Bidya Dhar Sahu

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Jerald Mahesh Kumar

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Meghana Koneru

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Halley Gora Ravuri

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Deep Pooja

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Hitesh Kulhari

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Abhinav Kanwal

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge