Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy P. Huynh is active.

Publication


Featured researches published by Jeremy P. Huynh.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions

Ruklanthi de Alwis; Scott A. Smith; Nicholas P. Olivarez; William B. Messer; Jeremy P. Huynh; Wahala M.P.B. Wahala; Laura J. White; Michael S. Diamond; Ralph S. Baric; James E. Crowe; Aravinda M. de Silva

Dengue is a mosquito-borne flavivirus that is spreading at an unprecedented rate and has developed into a major health and economic burden in over 50 countries. Even though infected individuals develop potent and long-lasting serotype-specific neutralizing antibodies (Abs), the epitopes engaged by human neutralizing Abs have not been identified. Here, we demonstrate that the dengue virus (DENV)-specific serum Ab response in humans consists of a large fraction of cross-reactive, poorly neutralizing Abs and a small fraction of serotype-specific, potently inhibitory Abs. Although many mouse-generated, strongly neutralizing monoclonal antibodies (mAbs) recognize epitopes that are present on recombinant DENV envelope (E) proteins, unexpectedly, the majority of neutralizing Abs in human immune sera bound to intact virions but not to the ectodomain of purified soluble E proteins. These conclusions with polyclonal Abs were confirmed with newly generated human mAbs derived from DENV-immune individuals. Two of three strongly neutralizing human mAbs bound to E protein epitopes that were preserved on the virion but not on recombinant E (rE) protein. We propose that humans produce Abs that neutralize DENV infection by binding a complex, quaternary structure epitope that is expressed only when E proteins are assembled on a virus particle. Mapping studies indicate that this epitope has a footprint that spans adjacent E protein dimers and includes residues at the hinge between domains I and II of E protein. These results have significant implications for the DENV Ab and vaccine field.


Journal of Virology | 2012

Evidence Supporting a Zoonotic Origin of Human Coronavirus Strain NL63

Jeremy P. Huynh; S. Li; Boyd Yount; A. Smith; L. Sturges; John C. Olsen; J. Nagel; J. B. Johnson; Sudhakar Agnihothram; J. E. Gates; Matthew B. Frieman; Ralph S. Baric; Eric F. Donaldson

ABSTRACT The relationship between bats and coronaviruses (CoVs) has received considerable attention since the severe acute respiratory syndrome (SARS)-like CoV was identified in the Chinese horseshoe bat (Rhinolophidae) in 2005. Since then, several bats throughout the world have been shown to shed CoV sequences, and presumably CoVs, in the feces; however, no bat CoVs have been isolated from nature. Moreover, there are very few bat cell lines or reagents available for investigating CoV replication in bat cells or for isolating bat CoVs adapted to specific bat species. Here, we show by molecular clock analysis that alphacoronavirus (α-CoV) sequences derived from the North American tricolored bat (Perimyotis subflavus) are predicted to share common ancestry with human CoV (HCoV)-NL63, with the most recent common ancestor between these viruses occurring approximately 563 to 822 years ago. Further, we developed immortalized bat cell lines from the lungs of this bat species to determine if these cells were capable of supporting infection with HCoVs. While SARS-CoV, mouse-adapted SARS-CoV (MA15), and chimeric SARS-CoVs bearing the spike genes of early human strains replicated inefficiently, HCoV-NL63 replicated for multiple passages in the immortalized lung cells from this bat species. These observations support the hypothesis that human CoVs are capable of establishing zoonotic-reverse zoonotic transmission cycles that may allow some CoVs to readily circulate and exchange genetic material between strains found in bats and other mammals, including humans.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity

William B. Messer; Ruklanthi de Alwis; Boyd Yount; Scott R. Royal; Jeremy P. Huynh; Scott A. Smith; James E. Crowe; Benjamin J. Doranz; Kristen M. Kahle; Jennifer M. Pfaff; Laura J. White; Carlos A. Sariol; Aravinda M. de Silva; Ralph S. Baric

Significance Dengue virus is the most important arthropod-borne viral disease of humans worldwide, with an estimated 390 million acute infections annually. The best means to control this global health threat is a vaccine, but dengue vaccine development has progressed slowly, partly because the antigenic targets required to stimulate long-term immunity are not well-defined. Here, we show a specific region on the viral surface (the envelope domain I/II hinge) that is the target of protective antibodies after primary human infections. These results are critically important for dengue vaccine design, because we hypothesize that a successful dengue vaccine will stimulate antibodies that target this region. More broadly, this study establishes a template for similar approaches for improving vaccines for influenza, HIV, hepatitis C virus, and other clinically important viral pathogens. The four dengue virus (DENV) serotypes, DENV-1, -2, -3, and -4, are endemic throughout tropical and subtropical regions of the world, with an estimated 390 million acute infections annually. Infection confers long-term protective immunity against the infecting serotype, but secondary infection with a different serotype carries a greater risk of potentially fatal severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. The single most effective measure to control this threat to global health is a tetravalent DENV vaccine. To date, attempts to develop a protective vaccine have progressed slowly, partly because the targets of type-specific human neutralizing antibodies (NAbs), which are critical for long-term protection, remain poorly defined, impeding our understanding of natural immunity and hindering effective vaccine development. Here, we show that the envelope glycoprotein domain I/II hinge of DENV-3 and DENV-4 is the primary target of the long-term type-specific NAb response in humans. Transplantation of a DENV-4 hinge into a recombinant DENV-3 virus showed that the hinge determines the serotype-specific neutralizing potency of primary human and nonhuman primate DENV immune sera and that the hinge region both induces NAbs and is targeted by protective NAbs in rhesus macaques. These results suggest that the success of live dengue vaccines may depend on their ability to stimulate NAbs that target the envelope glycoprotein domain I/II hinge region. More broadly, this study shows that complex conformational antibody epitopes can be transplanted between live viruses, opening up similar possibilities for improving the breadth and specificity of vaccines for influenza, HIV, hepatitis C virus, and other clinically important viral pathogens.


PLOS Neglected Tropical Diseases | 2012

Development and characterization of a reverse genetic system for studying dengue virus serotype 3 strain variation and neutralization

William B. Messer; Boyd Yount; Kari Hacker; Eric F. Donaldson; Jeremy P. Huynh; Aravinda M. de Silva; Ralph S. Baric

Dengue viruses (DENV) are enveloped single-stranded positive-sense RNA viruses transmitted by Aedes spp. mosquitoes. There are four genetically distinct serotypes designated DENV-1 through DENV-4, each further subdivided into distinct genotypes. The dengue scientific community has long contended that infection with one serotype confers lifelong protection against subsequent infection with the same serotype, irrespective of virus genotype. However this hypothesis is under increased scrutiny and the role of DENV genotypic variation in protection from repeated infection is less certain. As dengue vaccine trials move increasingly into field-testing, there is an urgent need to develop tools to better define the role of genotypic variation in DENV infection and immunity. To better understand genotypic variation in DENV-3 neutralization and protection, we designed and constructed a panel of isogenic, recombinant DENV-3 infectious clones, each expressing an envelope glycoprotein from a different DENV-3 genotype; Philippines 1982 (genotype I), Thailand 1995 (genotype II), Sri Lanka 1989 and Cuba 2002 (genotype III) and Puerto Rico 1977 (genotype IV). We used the panel to explore how natural envelope variation influences DENV-polyclonal serum interactions. When the recombinant viruses were tested in neutralization assays using immune sera from primary DENV infections, neutralization titers varied by as much as ∼19-fold, depending on the expressed envelope glycoprotein. The observed variability in neutralization titers suggests that relatively few residue changes in the E glycoprotein may have significant effects on DENV specific humoral immunity and influence antibody mediated protection or disease enhancement in the setting of both natural infection and vaccination. These genotypic differences are also likely to be important in temporal and spatial microevolution of DENV-3 in the background of heterotypic neutralization. The recombinant and synthetic tools described here are valuable for testing hypotheses on genetic determinants of DENV-3 immunopathogenesis.


Mbio | 2014

A Mouse Model for Betacoronavirus Subgroup 2c Using a Bat Coronavirus Strain HKU5 Variant

Sudhakar Agnihothram; Boyd Yount; Eric F. Donaldson; Jeremy P. Huynh; Vineet D. Menachery; Lisa E. Gralinski; Rachel L. Graham; Michelle M. Becker; Sakshi Tomar; Trevor Scobey; Heather L. Osswald; Alan C. Whitmore; Robin Gopal; Arun K. Ghosh; Andrew D. Mesecar; Maria Zambon; Mark T. Heise; Mark R. Denison; Ralph S. Baric

ABSTRACT Cross-species transmission of zoonotic coronaviruses (CoVs) can result in pandemic disease outbreaks. Middle East respiratory syndrome CoV (MERS-CoV), identified in 2012, has caused 182 cases to date, with ~43% mortality, and no small animal model has been reported. MERS-CoV and Pipistrellus bat coronavirus (BtCoV) strain HKU5 of Betacoronavirus (β-CoV) subgroup 2c share >65% identity at the amino acid level in several regions, including nonstructural protein 5 (nsp5) and the nucleocapsid (N) protein, which are significant drug and vaccine targets. BtCoV HKU5 has been described in silico but has not been shown to replicate in culture, thus hampering drug and vaccine studies against subgroup 2c β-CoVs. We report the synthetic reconstruction and testing of BtCoV HKU5 containing the severe acute respiratory syndrome (SARS)-CoV spike (S) glycoprotein ectodomain (BtCoV HKU5-SE). This virus replicates efficiently in cell culture and in young and aged mice, where the virus targets airway and alveolar epithelial cells. Unlike some subgroup 2b SARS-CoV vaccines that elicit a strong eosinophilia following challenge, we demonstrate that BtCoV HKU5 and MERS-CoV N-expressing Venezuelan equine encephalitis virus replicon particle (VRP) vaccines do not cause extensive eosinophilia following BtCoV HKU5-SE challenge. Passage of BtCoV HKU5-SE in young mice resulted in enhanced virulence, causing 20% weight loss, diffuse alveolar damage, and hyaline membrane formation in aged mice. Passaged virus was characterized by mutations in the nsp13, nsp14, open reading frame 5 (ORF5) and M genes. Finally, we identified an inhibitor active against the nsp5 proteases of subgroup 2c β-CoVs. Synthetic-genome platforms capable of reconstituting emerging zoonotic viral pathogens or their phylogenetic relatives provide new strategies for identifying broad-based therapeutics, evaluating vaccine outcomes, and studying viral pathogenesis. IMPORTANCE The 2012 outbreak of MERS-CoV raises the specter of another global epidemic, similar to the 2003 SARS-CoV epidemic. MERS-CoV is related to BtCoV HKU5 in target regions that are essential for drug and vaccine testing. Because no small animal model exists to evaluate MERS-CoV pathogenesis or to test vaccines, we constructed a recombinant BtCoV HKU5 that expressed a region of the SARS-CoV spike (S) glycoprotein, thereby allowing the recombinant virus to grow in cell culture and in mice. We show that this recombinant virus targets airway epithelial cells and causes disease in aged mice. We use this platform to (i) identify a broad-spectrum antiviral that can potentially inhibit viruses closely related to MERS-CoV, (ii) demonstrate the absence of increased eosinophilic immune pathology for MERS-CoV N protein-based vaccines, and (iii) mouse adapt this virus to identify viral genetic determinants of cross-species transmission and virulence. This study holds significance as a strategy to control newly emerging viruses. The 2012 outbreak of MERS-CoV raises the specter of another global epidemic, similar to the 2003 SARS-CoV epidemic. MERS-CoV is related to BtCoV HKU5 in target regions that are essential for drug and vaccine testing. Because no small animal model exists to evaluate MERS-CoV pathogenesis or to test vaccines, we constructed a recombinant BtCoV HKU5 that expressed a region of the SARS-CoV spike (S) glycoprotein, thereby allowing the recombinant virus to grow in cell culture and in mice. We show that this recombinant virus targets airway epithelial cells and causes disease in aged mice. We use this platform to (i) identify a broad-spectrum antiviral that can potentially inhibit viruses closely related to MERS-CoV, (ii) demonstrate the absence of increased eosinophilic immune pathology for MERS-CoV N protein-based vaccines, and (iii) mouse adapt this virus to identify viral genetic determinants of cross-species transmission and virulence. This study holds significance as a strategy to control newly emerging viruses.


Journal of Virology | 2014

RNA Populations in Immunocompromised Patients as Reservoirs for Novel Norovirus Variants

Everardo Vega; Eric F. Donaldson; Jeremy P. Huynh; Leslie Barclay; Ben Lopman; Ralph S. Baric; Luke F. Chen; Jan Vinjé

ABSTRACT Noroviruses are the leading cause of acute gastroenteritis outbreaks worldwide. The majority of norovirus outbreaks are caused by genogroup II.4 (GII.4). Novel GII.4 strains emerge every 2 to 4 years and replace older variants as the dominant norovirus. Novel variants emerge through a combination of recombination, genetic drift, and selection driven by population immunity, but the exact mechanism of how or where is not known. We detected two previously unknown novel GII.4 variants, termed GII.4 UNK1 and GII.4 UNK2, and a diverse norovirus population in fecal specimens from immunocompromised individuals with diarrhea after they had undergone bone marrow transplantation. We hypothesized that immunocompromised individuals can serve as reservoirs for novel norovirus variants. To test our hypothesis, metagenomic analysis of viral RNA populations was combined with a full-genome bioinformatic analysis of publicly available GII.4 norovirus sequences from 1974 to 2014 to identify converging sites. Variable sites were proportionally more likely to be within two amino acids (P < 0.05) of positively selected sites. Further analysis using a hypergeometric distribution indicated that polymorphic site distribution was random and its proximity to positively selected sites was dependent on the size of the norovirus genome and the number of positively selected sites.In conclusion, random mutations may have a positive impact on driving norovirus evolution, and immunocompromised individuals could serve as potential reservoirs for novel GII.4 strains. IMPORTANCE Norovirus is the most common cause of viral gastroenteritis in the United States. Every 2 to 3 years novel norovirus variants emerge and replace dominant strains. The continual emergence of novel noroviruses is believed to be caused by a combination of genetic drift, population immunity, and recombination, but exactly how this emergence occurs remains unknown. In this study, we identified two novel GII.4 variants in immunocompromised bone marrow transplant patients. Using metagenomic and bioinformatic analysis, we showed that most genetic polymorphisms in the novel variants occur near 0 to 2 amino acids of positively selected sites, but the distribution of mutations was random; clustering of polymorphisms with positively selected sites was a result of genome size and number of mutations and positively selected sites. This study shows that immunocompromised patients can harbor infectious novel norovirus variants, and although mutations in viruses are random, they can have a positive effect on viral evolution.


Vaccine | 2016

Evaluation of protection induced by a dengue virus serotype 2 envelope domain III protein scaffold/DNA vaccine in non-human primates

Sean P. McBurney; Justine E. Sunshine; Sarah Gabriel; Jeremy P. Huynh; William F. Sutton; Deborah H. Fuller; Nancy L. Haigwood; William B. Messer

We describe the preclinical development of a dengue virus vaccine targeting the dengue virus serotype 2 (DENV2) envelope domain III (EDIII). This study provides proof-of-principle that a dengue EDIII protein scaffold/DNA vaccine can protect against dengue challenge. The dengue vaccine (EDIII-E2) is composed of both a protein particle and a DNA expression plasmid delivered simultaneously via intramuscular injection (protein) and gene gun (DNA) into rhesus macaques. The protein component can contain a maximum of 60 copies of EDIII presented on a multimeric scaffold of Geobacillus stearothermophilus E2 proteins. The DNA component is composed of the EDIII portion of the envelope gene cloned into an expression plasmid. The EDIII-E2 vaccine elicited robust antibody responses to DENV2, with neutralizing antibody responses detectable following the first boost and reaching titers of greater than 1:100,000 following the second and final boost. Vaccinated and naïve groups of macaques were challenged with DENV2. All vaccinated macaques were protected from detectable viremia by infectious assay, while naïve animals had detectable viremia for 2-7 days post-challenge. All naïve macaques had detectable viral RNA from day 2-10 post-challenge. In the EDIII-E2 group, three macaques were negative for viral RNA and three were found to have detectable viral RNA post challenge. Viremia onset was delayed and the duration was shortened relative to naïve controls. The presence of viral RNA post-challenge corresponded to a 10-30-fold boost in neutralization titers 28 days post challenge, whereas no boost was observed in the fully protected animals. Based on these results, we determine that pre-challenge 50% neutralization titers of >1:6000 correlated with sterilizing protection against DENV2 challenge in EDIII-E2 vaccinated macaques. Identification of the critical correlate of protection for the EDIII-E2 platform in the robust non-human primate model lays the groundwork for further development of a tetravalent EDIII-E2 dengue vaccine.


Virology | 2015

A simian hemorrhagic fever virus isolate from persistently infected baboons efficiently induces hemorrhagic fever disease in Japanese macaques

Heather A. Vatter; Eric F. Donaldson; Jeremy P. Huynh; Stephanie Rawlings; Minsha Manoharan; Alfred W. Legasse; Shannon L. Planer; Mary F. Dickerson; Anne D. Lewis; Lois M. A. Colgin; Michael K. Axthelm; Jerilyn Pecotte; Ralph S. Baric; Scott W. Wong; Margo A. Brinton

Abstract Simian hemorrhagic fever virus is an arterivirus that naturally infects species of African nonhuman primates causing acute or persistent asymptomatic infections. Although it was previously estimated that 1% of baboons are SHFV-positive, more than 10% of wild-caught and captive-bred baboons tested were SHFV positive and the infections persisted for more than 10 years with detectable virus in the blood (100–1000 genomes/ml). The sequences of two baboon SHFV isolates that were amplified by a single passage in primary macaque macrophages had a high degree of identity to each other as well as to the genome of SHFV-LVR, a laboratory strain isolated in the 1960s. Infection of Japanese macaques with 100PFU of a baboon isolate consistently produced high level viremia, pro-inflammatory cytokines, elevated tissue factor levels and clinical signs indicating coagulation defects. The baboon virus isolate provides a reliable BSL2 model of viral hemorrhagic fever disease in macaques.


Virology | 2013

The mechanism of differential neutralization of dengue serotype 3 strains by monoclonal antibody 8A1

Yang Zhou; S. Kyle Austin; Daved H. Fremont; Boyd Yount; Jeremy P. Huynh; Aravinda M. de Silva; Ralph S. Baric; William B. Messer

While previous studies have demonstrated that envelope (E) glycoprotein variation between dengue viruses (DENV) genotypes can influence antibody neutralization potency, the mechanisms of variable neutralization remain incompletely understood. Here we characterize epitope antibody interactions of a DENV-3 EDIII binding mouse mAb 8A1 which displays highly variable neutralizing activity against DENV-3 genotypes. Using a DENV-3 reverse genetics platform, we characterize ability of 8A1 to bind and neutralize naturally occurring DENV-3 E genotypic variant viruses. Introduction of single and multiple amino acid mutations into the parental clone background demonstrates that mutations at positions 301 and 383 on EDIII are responsible for 8A1 differential neutralization phenotypes. ELISA and surface plasmon resonance (SPR) studies indicate differences in binding are responsible for the variable neutralization. Variability at position 301 primarily determined binding difference through influencing antibody-EDIII dissociation rate. Our findings are relevant to many groups focusing on DENV EDIII as a vaccine target.


Journal of Experimental Medicine | 2018

Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection

Sharmila Nair; Jeremy P. Huynh; Vicky Lampropoulou; Ekaterina Loginicheva; Ekaterina Esaulova; Anshu P. Gounder; Adrianus C. M. Boon; Elizabeth A. Schwarzkopf; Tara R. Bradstreet; Brian T. Edelson; Maxim N. Artyomov; Christina L. Stallings; Michael S. Diamond

Immune-Responsive Gene 1 (Irg1) is a mitochondrial enzyme that produces itaconate under inflammatory conditions, principally in cells of myeloid lineage. Cell culture studies suggest that itaconate regulates inflammation through its inhibitory effects on cytokine and reactive oxygen species production. To evaluate the functions of Irg1 in vivo, we challenged wild-type (WT) and Irg1−/− mice with Mycobacterium tuberculosis (Mtb) and monitored disease progression. Irg1−/−, but not WT, mice succumbed rapidly to Mtb, and mortality was associated with increased infection, inflammation, and pathology. Infection of LysM-Cre Irg1fl/fl, Mrp8-Cre Irg1fl/fl, and CD11c-Cre Irg1fl/fl conditional knockout mice along with neutrophil depletion experiments revealed a role for Irg1 in LysM+ myeloid cells in preventing neutrophil-mediated immunopathology and disease. RNA sequencing analyses suggest that Irg1 and its production of itaconate temper Mtb-induced inflammatory responses in myeloid cells at the transcriptional level. Thus, an Irg1 regulatory axis modulates inflammation to curtail Mtb-induced lung disease.

Collaboration


Dive into the Jeremy P. Huynh's collaboration.

Top Co-Authors

Avatar

Ralph S. Baric

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Boyd Yount

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aravinda M. de Silva

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Eric F. Donaldson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

James E. Crowe

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Laura J. White

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ruklanthi de Alwis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Scott A. Smith

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge