Jeremy R. Haag
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeremy R. Haag.
Cell | 2005
Yasuyuki Onodera; Jeremy R. Haag; Thomas S. Ream; Pedro Costa Nunes; Olga Pontes
All eukaryotes have three nuclear DNA-dependent RNA polymerases, namely, Pol I, II, and III. Interestingly, plants have catalytic subunits for a fourth nuclear polymerase, Pol IV. Genetic and biochemical evidence indicates that Pol IV does not functionally overlap with Pol I, II, or III and is nonessential for viability. However, disruption of the Pol IV catalytic subunit genes NRPD1 or NRPD2 inhibits heterochromatin association into chromocenters, coincident with losses in cytosine methylation at pericentromeric 5S gene clusters and AtSN1 retroelements. Loss of CG, CNG, and CNN methylation in Pol IV mutants implicates a partnership between Pol IV and the methyltransferase responsible for RNA-directed de novo methylation. Consistent with this hypothesis, 5S gene and AtSN1 siRNAs are essentially eliminated in Pol IV mutants. The data suggest that Pol IV helps produce siRNAs that target de novo cytosine methylation events required for facultative heterochromatin formation and higher-order heterochromatin associations.
Cell | 2008
Andrzej T. Wierzbicki; Jeremy R. Haag
Nuclear transcription is not restricted to genes but occurs throughout the intergenic and noncoding space of eukaryotic genomes. The functional significance of this widespread noncoding transcription is mostly unknown. We show that Arabidopsis RNA polymerase IVb/Pol V, a multisubunit nuclear enzyme required for siRNA-mediated gene silencing of transposons and other repeats, transcribes intergenic and noncoding sequences, thereby facilitating heterochromatin formation and silencing of overlapping and adjacent genes. Pol IVb/Pol V transcription requires the chromatin-remodeling protein DRD1 but is independent of siRNA biogenesis. However, Pol IVb/Pol V transcription and siRNA production are both required to silence transposons, suggesting that Pol IVb/Pol V generates RNAs or chromatin structures that serve as scaffolds for siRNA-mediated heterochromatin-forming complexes. Pol IVb/Pol V function provides a solution to a paradox of epigenetic control: the need for transcription in order to transcriptionally silence the same region.
Cell | 2006
Olga Pontes; Carey Fei Li; Pedro Costa Nunes; Jeremy R. Haag; Thomas S. Ream; Alexa Vitins; Steven E. Jacobsen
In Arabidopsis thaliana, small interfering RNAs (siRNAs) direct cytosine methylation at endogenous DNA repeats in a pathway involving two forms of nuclear RNA polymerase IV (Pol IVa and Pol IVb), RNA-DEPENDENT RNA POLYMERASE 2 (RDR2), DICER-LIKE 3 (DCL3), ARGONAUTE4 (AGO4), the chromatin remodeler DRD1, and the de novo cytosine methyltransferase DRM2. We show that RDR2, DCL3, AGO4, and NRPD1b (the largest subunit of Pol IVb) colocalize with siRNAs within the nucleolus. By contrast, Pol IVa and DRD1 are external to the nucleolus and colocalize with endogenous repeat loci. Mutation-induced loss of pathway proteins causes downstream proteins to mislocalize, revealing their order of action. Pol IVa acts first, and its localization is RNA dependent, suggesting an RNA template. We hypothesize that maintenance of the heterochromatic state involves locus-specific Pol IVa transcription followed by siRNA production and assembly of AGO4- and NRPD1b-containing silencing complexes within nucleolar processing centers.
Nature Genetics | 2009
Andrzej T. Wierzbicki; Thomas S. Ream; Jeremy R. Haag
Retrotransposons and repetitive DNA elements in eukaryotes are silenced by small RNA–directed heterochromatin formation. In Arabidopsis, this process involves 24-nt siRNAs that bind to ARGONAUTE4 (AGO4) and facilitate the targeting of complementary loci via unknown mechanisms. Nuclear RNA polymerase V (Pol V) is an RNA silencing enzyme recently shown to generate noncoding transcripts at loci silenced by 24-nt siRNAs. We show that AGO4 physically interacts with these Pol V transcripts and is thereby recruited to the corresponding chromatin. We further show that DEFECTIVE IN MERISTEM SILENCING3 (DMS3), a structural maintenance of chromosomes (SMC) hinge-domain protein, functions in the assembly of Pol V transcription initiation or elongation complexes. Collectively, our data suggest that AGO4 is guided to target loci through base-pairing of associated siRNAs with nascent Pol V transcripts.
Nature Reviews Molecular Cell Biology | 2011
Jeremy R. Haag
In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.
Molecular Cell | 2009
Thomas S. Ream; Jeremy R. Haag; Andrzej T. Wierzbicki; Carrie D. Nicora; Angela D. Norbeck; Jian-Kang Zhu; Gretchen Hagen; Tom J. Guilfoyle; Ljiljana Paša-Tolić
In addition to RNA polymerases I, II, and III, the essential RNA polymerases present in all eukaryotes, plants have two additional nuclear RNA polymerases, abbreviated as Pol IV and Pol V, that play nonredundant roles in siRNA-directed DNA methylation and gene silencing. We show that Arabidopsis Pol IV and Pol V are composed of subunits that are paralogous or identical to the 12 subunits of Pol II. Four subunits of Pol IV are distinct from their Pol II paralogs, six subunits of Pol V are distinct from their Pol II paralogs, and four subunits differ between Pol IV and Pol V. Importantly, the subunit differences occur in key positions relative to the template entry and RNA exit paths. Our findings support the hypothesis that Pol IV and Pol V are Pol II-like enzymes that evolved specialized roles in the production of noncoding transcripts for RNA silencing and genome defense.
Trends in Plant Science | 2008
Jeremy R. Haag; Thomas S. Ream; Andrzej T. Wierzbicki
Eukaryotes typically have three multi-subunit enzymes that decode the nuclear genome into RNA: DNA-dependent RNA polymerases I, II and III (Pol I, II and III). Remarkably, higher plants have five multi-subunit nuclear RNA polymerases: the ubiquitous Pol I, II and III, which are essential for viability; plus two non-essential polymerases, Pol IVa and Pol IVb, which specialize in small RNA-mediated gene silencing pathways. There are numerous examples of phenomena that require Pol IVa and/or Pol IVb, including RNA-directed DNA methylation of endogenous repetitive elements, silencing of transgenes, regulation of flowering-time genes, inducible regulation of adjacent gene pairs, and spreading of mobile silencing signals. Although biochemical details concerning Pol IV enzymatic activities are lacking, genetic evidence suggests several alternative models for how Pol IV might function.
Molecular Cell | 2012
Jeremy R. Haag; Thomas S. Ream; Michelle R. Marasco; Carrie D. Nicora; Angela D. Norbeck; Ljiljana Paša-Tolić
In Arabidopsis, RNA-dependent DNA methylation and transcriptional silencing involves three nuclear RNA polymerases that are biochemically undefined: the presumptive DNA-dependent RNA polymerases Pol IV and Pol V and the putative RNA-dependent RNA polymerase RDR2. Here we demonstrate their RNA polymerase activities in vitro. Unlike Pol II, Pols IV and V require an RNA primer, are insensitive to α-amanitin, and differ in their ability to displace the nontemplate DNA strand during transcription. Biogenesis of 24 nt small interfering RNAs (siRNAs), which guide cytosine methylation to corresponding sequences, requires both Pol IV and RDR2, which physically associate in vivo. Whereas Pol IV does not require RDR2 for activity, RDR2 is nonfunctional in the absence of associated Pol IV. These results suggest that the physical and mechanistic coupling of Pol IV and RDR2 results in the channeled synthesis of double-stranded precursors for 24 nt siRNA biogenesis.
PLOS ONE | 2009
Jeremy R. Haag; Olga Pontes
Plants are unique among eukaryotes in having five multi-subunit nuclear RNA polymerases: the ubiquitous RNA polymerases I, II and III plus two plant-specific activities, nuclear RNA polymerases IV and V (previously known as Polymerases IVa and IVb). Pol IV and Pol V are not required for viability but play non-redundant roles in small interfering RNA (siRNA)-mediated pathways, including a pathway that silences retrotransposons and endogenous repeats via siRNA-directed DNA methylation. RNA polymerase activity has not been demonstrated for Polymerases IV or V in vitro, making it unclear whether they are catalytically active enzymes. Their largest and second-largest subunit sequences have diverged considerably from Pol I, II and III in the vicinity of the catalytic center, yet retain the invariant Metal A and Metal B amino acid motifs that bind magnesium ions essential for RNA polymerization. By using site-directed mutagenesis in conjunction with in vivo functional assays, we show that the Metal A and Metal B motifs of Polymerases IV and V are essential for siRNA production, siRNA-directed DNA methylation, retrotransposon silencing, and the punctate nuclear localization patterns typical of both polymerases. Collectively, these data show that the minimal core sequences of polymerase active sites, the Metal A and B sites, are essential for Pol IV and Pol V biological functions, implying that both are catalytically active.
Genetics | 2008
Yasuyuki Onodera; Kosuke Nakagawa; Jeremy R. Haag; Diane J. Pikaard; Tetsuo Mikami; Thomas S. Ream; Yusuke Ito
Unlike animals, whose gametes are direct products of meiosis, plant meiotic products undergo additional rounds of mitosis, developing into multicellular haploid gametophytes that produce egg or sperm cells. The complex development of gametophytes requires extensive expression of the genome, with DNA-dependent RNA polymerases I, II, and III being the key enzymes for nuclear gene expression. We show that loss-of-function mutations in genes encoding key subunits of RNA polymerases I, II, or III are not transmitted maternally due to the failure of female megaspores to complete the three rounds of mitosis required for the development of mature gametophytes. However, male microspores bearing defective polymerase alleles develop into mature gametophytes (pollen) that germinate, grow pollen tubes, fertilize wild-type female gametophytes, and transmit the mutant genes to the next generation at moderate frequency. These results indicate that female gametophytes are autonomous with regard to gene expression, relying on transcription machinery encoded by their haploid nuclei. By contrast, male gametophytes make extensive use of transcription machinery that is synthesized by the diploid parent plant (sporophyte) and persists in mature pollen. As a result, the expected stringent selection against nonfunctional essential genes in the haploid state occurs in the female lineage but is relaxed in the male lineage.