Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerilyn A. Walker is active.

Publication


Featured researches published by Jerilyn A. Walker.


Nature | 2011

Mapping copy number variation by population-scale genome sequencing

Ryan E. Mills; Klaudia Walter; Chip Stewart; Robert E. Handsaker; Ken Chen; Can Alkan; Alexej Abyzov; Seungtai Yoon; Kai Ye; R. Keira Cheetham; Asif T. Chinwalla; Donald F. Conrad; Yutao Fu; Fabian Grubert; Iman Hajirasouliha; Fereydoun Hormozdiari; Lilia M. Iakoucheva; Zamin Iqbal; Shuli Kang; Jeffrey M. Kidd; Miriam K. Konkel; Joshua M. Korn; Ekta Khurana; Deniz Kural; Hugo Y. K. Lam; Jing Leng; Ruiqiang Li; Yingrui Li; Chang-Yun Lin; Ruibang Luo

Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.


Nature | 2010

The genome of a songbird.

Wesley C. Warren; David F. Clayton; Hans Ellegren; Arthur P. Arnold; LaDeana W. Hillier; Axel Künstner; Steve Searle; Simon White; Albert J. Vilella; Susan Fairley; Andreas Heger; Lesheng Kong; Chris P. Ponting; Erich D. Jarvis; Claudio V. Mello; Patrick Minx; Peter V. Lovell; Tarciso Velho; Margaret Ferris; Christopher N. Balakrishnan; Saurabh Sinha; Charles Blatti; Sarah E. London; Yun Li; Ya-Chi Lin; Julia M. George; Jonathan V. Sweedler; Bruce R. Southey; Preethi H. Gunaratne; M. G. Watson

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken—the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.


Nature | 2015

An integrated map of structural variation in 2,504 human genomes

Peter H. Sudmant; Tobias Rausch; Eugene J. Gardner; Robert E. Handsaker; Alexej Abyzov; John Huddleston; Zhang Y; Kai Ye; Goo Jun; Markus His Yang Fritz; Miriam K. Konkel; Ankit Malhotra; Adrian M. Stütz; Xinghua Shi; Francesco Paolo Casale; Jieming Chen; Fereydoun Hormozdiari; Gargi Dayama; Ken Chen; Maika Malig; Mark Chaisson; Klaudia Walter; Sascha Meiers; Seva Kashin; Erik Garrison; Adam Auton; Hugo Y. K. Lam; Xinmeng Jasmine Mu; Can Alkan; Danny Antaki

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.


Nature | 2011

Comparative and demographic analysis of orang-utan genomes

Devin P. Locke; LaDeana W. Hillier; Wesley C. Warren; Kim C. Worley; Lynne V. Nazareth; Donna M. Muzny; Shiaw-Pyng Yang; Zhengyuan Wang; Asif T. Chinwalla; Patrick Minx; Makedonka Mitreva; Lisa Cook; Kim D. Delehaunty; Catrina C. Fronick; Heather K. Schmidt; Lucinda A. Fulton; Robert S. Fulton; Joanne O. Nelson; Vincent Magrini; Craig S. Pohl; Tina Graves; Chris Markovic; Andy Cree; Huyen Dinh; Jennifer Hume; Christie Kovar; Gerald Fowler; Gerton Lunter; Stephen Meader; Andreas Heger

‘Orang-utan’ is derived from a Malay term meaning ‘man of the forest’ and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (Ne) expanded exponentially relative to the ancestral Ne after the split, while Bornean Ne declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.


PLOS Genetics | 2011

A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans

Chip Stewart; Deniz Kural; Michael Stromberg; Jerilyn A. Walker; Miriam K. Konkel; Adrian M. Stütz; Alexander E. Urban; Fabian Grubert; Hugo Y. K. Lam; Wan Ping Lee; Michele A. Busby; Amit Indap; Erik Garrison; Chad D. Huff; Jinchuan Xing; Michael Snyder; Lynn B. Jorde; Mark A. Batzer; Jan O. Korbel; Gabor T. Marth

As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including hemophilia, neurofibromatosis, and various cancers. Here we present a comprehensive map of 7,380 MEI polymorphisms from the 1000 Genomes Project whole-genome sequencing data of 185 samples in three major populations detected with two detection methods. This catalog enables us to systematically study mutation rates, population segregation, genomic distribution, and functional properties of MEI polymorphisms and to compare MEI to SNP variation from the same individuals. Population allele frequencies of MEI and SNPs are described, broadly, by the same neutral ancestral processes despite vastly different mutation mechanisms and rates, except in coding regions where MEI are virtually absent, presumably due to strong negative selection. A direct comparison of MEI and SNP diversity levels suggests a differential mobile element insertion rate among populations.


Nature | 2014

Gibbon genome and the fast karyotype evolution of small apes.

Lucia Carbone; R. Alan Harris; Sante Gnerre; Krishna R. Veeramah; Belen Lorente-Galdos; John Huddleston; Thomas J. Meyer; Javier Herrero; Christian Roos; Bronwen Aken; Fabio Anaclerio; Nicoletta Archidiacono; Carl Baker; Daniel Barrell; Mark A. Batzer; Kathryn Beal; Antoine Blancher; Craig Bohrson; Markus Brameier; Michael S. Campbell; Claudio Casola; Giorgia Chiatante; Andrew Cree; Annette Damert; Pieter J. de Jong; Laura Dumas; Marcos Fernandez-Callejo; Paul Flicek; Nina V. Fuchs; Ivo Gut

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Analytical Biochemistry | 2003

Quantitative intra-short interspersed element PCR for species-specific DNA identification

Jerilyn A. Walker; David Hughes; Bridget A. Anders; Jaiprakash G. Shewale; Sudhir K. Sinha; Mark A. Batzer

We have designed and evaluated four assays based upon PCR amplification of short interspersed elements (SINEs) for species-specific detection and quantitation of bovine, porcine, chicken, and ruminant DNA. The need for these types of approaches has increased drastically in response to the bovine spongiform encephalopathy epidemic. Using SYBR Green-based detection, the minimum effective quantitation levels were 0.1, 0.01, 5, and 1 pg of starting DNA template using our bovine, porcine, chicken, and ruminant species-specific SINE-based PCR assays, respectively. Background cross-amplification with DNA templates derived from 14 other species was negligible. Species specificity of the PCR amplicons was further demonstrated by the ability of the assays to accurately detect trace quantities of species-specific DNA from mixed (complex) sources. Bovine DNA was detected at 0.005% (0.5 pg), porcine DNA was detected at 0.0005% (0.05 pg), and chicken DNA was detected at 0.05% (5 pg) in a 10-ng mixture of bovine, porcine, and chicken DNA templates. We also tested six commercially purchased meat products using these assays. The SINE-based PCR methods we report here are species-specific, are highly sensitive, and will improve the detection limits for DNA sequences derived from these species.


Aging Cell | 2010

HRAS1 and LASS1 with APOE are associated with human longevity and healthy aging.

S. Michal Jazwinski; Sangkyu Kim; Jianliang Dai; Li Li; Xiuhua Bi; James C. Jiang; Jonathan Arnold; Mark A. Batzer; Jerilyn A. Walker; David A. Welsh; Christina M. Lefante; Julia Volaufova; Leann Myers; L. Joseph Su; Dorothy B. Hausman; Michael V. Miceli; Eric Ravussin; Leonard W. Poon; Katie E. Cherry; Michael A. Welsch

The search for longevity‐determining genes in human has largely neglected the operation of genetic interactions. We have identified a novel combination of common variants of three genes that has a marked association with human lifespan and healthy aging. Subjects were recruited and stratified according to their genetically inferred ethnic affiliation to account for population structure. Haplotype analysis was performed in three candidate genes, and the haplotype combinations were tested for association with exceptional longevity. An HRAS1 haplotype enhanced the effect of an APOE haplotype on exceptional survival, and a LASS1 haplotype further augmented its magnitude. These results were replicated in a second population. A profile of healthy aging was developed using a deficit accumulation index, which showed that this combination of gene variants is associated with healthy aging. The variation in LASS1 is functional, causing enhanced expression of the gene, and it contributes to healthy aging and greater survival in the tenth decade of life. Thus, rare gene variants need not be invoked to explain complex traits such as aging; instead rare congruence of common gene variants readily fulfills this role. The interaction between the three genes described here suggests new models for cellular and molecular mechanisms underlying exceptional survival and healthy aging that involve lipotoxicity.


Evolutionary Anthropology | 2010

LINEs and SINEs of primate evolution.

Miriam K. Konkel; Jerilyn A. Walker; Mark A. Batzer

The primate order is a monophyletic group thought to have diverged from the Euarchonta more than 65 mya. 1 Recent paleontological and molecular evolution studies place the last common ancestor of primates even earlier (≥ 85 mya). 2 More than 300 extant primate species are recognized today, 3 , 4 clearly emphasizing their diversity and success. Our understanding of the evolution of primates and the composition of their genomes has been revolutionized within the last decade through the increasing availability and analyses of sequenced genomes. However, several aspects of primate evolution have yet to be resolved. DNA sequencing of a wider array of primate species now underway will provide an opportunity to investigate and expand on these questions in great detail. One of the most surprising findings of the human (Homo sapiens) genome project was the high content of repetitive sequences, in particular of mobile DNA. 5 This finding has been replicated in all available and analyzed primate draft genome sequences analyzed to date. 5–7 In fact, transposable elements (TEs) contribute about 50% of the genome size of humans, 5 chimpanzees (Pan troglodytes), 6 and rhesus macaques (Macacca mulatta). 7 The proportion of TEs among the overall genome content is likely even higher due to the decay of older mobile elements beyond recognition, rearrangements of genomes over the course of evolution, and the challenge of sequencing and assembling repeat‐rich regions of the genome. 8 , 9 Retrotransposons, in particular L1, long interspersed element 1 (LINE1), and Alu, a short interspersed element (SINE), are prominent in primate genomes, and have played a major role in genome evolution and architecture. The evolution and success of the primate‐specific LINE and SINE subfamilies (L1 and Alu in particular), their application in phylogenetic studies, and their impact on the architecture of primate genomes will be the focus of this review. In addition, we will briefly cover the emergence and impact of SVA (SINE‐R/VNTR/Alu), a composite retrotransposon of relatively recent origin, and of other SINEs that are not common to all primates.


Genome Biology and Evolution | 2012

Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons.

Lucia Carbone; R. Alan Harris; Alan R. Mootnick; Aleksandar Milosavljevic; David I. K. Martin; Mariano Rocchi; Nicoletta Archidiacono; Miriam K. Konkel; Jerilyn A. Walker; Mark A. Batzer; Pieter J. de Jong

Gibbons (Hylobatidae) shared a common ancestor with the other hominoids only 15–18 million years ago. Nevertheless, gibbons show very distinctive features that include heavily rearranged chromosomes. Previous observations indicate that this phenomenon may be linked to the attenuated epigenetic repression of transposable elements (TEs) in gibbon species. Here we describe the massive expansion of a repeat in almost all the centromeres of the eastern hoolock gibbon (Hoolock leuconedys). We discovered that this repeat is a new composite TE originating from the combination of portions of three other elements (L1ME5, AluSz6, and SVA_A) and thus named it LAVA. We determined that this repeat is found in all the gibbons but does not occur in other hominoids. Detailed investigation of 46 different LAVA elements revealed that the majority of them have target site duplications (TSDs) and a poly-A tail, suggesting that they have been retrotransposing in the gibbon genome. Although we did not find a direct correlation between the emergence of LAVA elements and human–gibbon synteny breakpoints, this new composite transposable element is another mark of the great plasticity of the gibbon genome. Moreover, the centromeric expansion of LAVA insertions in the hoolock closely resembles the massive centromeric expansion of the KERV-1 retroelement reported for wallaby (marsupial) interspecific hybrids. The similarity between the two phenomena is consistent with the hypothesis that evolution of the gibbons is characterized by defects in epigenetic repression of TEs, perhaps triggered by interspecific hybridization.

Collaboration


Dive into the Jerilyn A. Walker's collaboration.

Top Co-Authors

Avatar

Mark A. Batzer

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Miriam K. Konkel

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary E. Truett

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Sudhir K. Sinha

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cody J. Steely

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge