Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvain Oberti is active.

Publication


Featured researches published by Sylvain Oberti.


Journal of The Optical Society of America A-optics Image Science and Vision | 2004

Fast calibration of high-order adaptive optics systems

Markus Kasper; Enrico Fedrigo; Douglas P. Looze; Henri Bonnet; Liviu Ivanescu; Sylvain Oberti

We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.


Proceedings of SPIE | 2004

MAD status report

Enrico Marchetti; Roland Brast; Bernhard Delabre; R. Donaldson; Enrico Fedrigo; Christoph Frank; Norbert Hubin; Johann Kolb; Miska Le Louarn; Jean-Louis Lizon; Sylvain Oberti; Roland Reiss; Joana Santos; Sebastien Tordo; Roberto Ragazzoni; Carmelo Arcidiacono; Andrea Baruffolo; Emiliano Diolaiti; Jacopo Farinato; Elise Vernet-Viard

The European Southern Observatory together with external research Institutes is building a Multi-Conjugate Adaptive Optics Demonstrator (MAD) to perform wide field of view adaptive optics correction. The aim of MAD is to demonstrate on the sky the feasibility of the MCAO technique and to evaluate all the critical aspects in building such kind of instrument in the framework of both the 2nd generation VLT instrumentation and the 100-m Overwhelmingly Large Telescope (OWL). The MAD module will be installed at one of the VLT unit telescope in Paranal to perform on-sky observations. MAD is based on a two deformable mirrors correction system and on two multi-reference wavefront sensors capable to observe simultaneously some pre-selected configurations of Natural Guide Stars. MAD is expected to correct up to 2 arcmin field of view in K band. MAD has just started the integration phase which will be followed up by a long period of testing. In this paper we present the final design of MAD with a brief report about the status of the integration.


Proceedings of SPIE | 2004

MACAO-VLTI adaptive optics systems performance

Robin Arsenault; R. Donaldson; Christophe Dupuy; Enrico Fedrigo; Norbert Hubin; Liviu Ivanescu; Markus Kasper; Sylvain Oberti; Jerome Paufique; Silvio Rossi; Armin Silber; Bernhard Delabre; Jean-Louis Lizon; Pierre Gigan

In April and August ’03 two MACAO-VLTI curvature AO systems were installed on the VLT telescopes unit 2 and 3 in Paranal (Chile). These are 60 element systems using a 150mm bimorph deformable mirror and 60 APD’s as WFS detectors. Valuable integration & commissioning experience has been gained during these 2 missions. Several tests have been performed in order to evaluate system performance on the sky. The systems have proven to be extremely robust, performing in a stable fashion in extreme seeing condition (seeing up to 3”). Strehl ratio of 0.65 and residual tilt smaller than 10 mas have been obtained on the sky in 0.8” seeing condition. Weak guide source performance is also excellent with a strehl of 0.26 on a V~16 magnitude star. Several functionalities have been successfully tested including: chopping, off-axis guiding, atmospheric refraction compensation etc. The AO system can be used in a totally automatic fashion with a small overhead: the AO loop can be closed on the target less than 60 sec after star acquisition by the telescope. It includes reading the seeing value given by the site monitor, evaluate the guide star magnitude (cycling through neutral density filters) setting the close-loop AO parameters (system gain and vibrating membrane mirror stroke) including calculation of the command-matrix. The last 2 systems will be installed in August ’04 and in the course of 2005.


Proceedings of SPIE | 2006

Large DM AO systems: synthetic IM or calibration on sky?

Sylvain Oberti; Fernando Quirós-Pacheco; Simone Esposito; Riccardo Muradore; Robin Arsenault; Enrico Fedrigo; M. Kasper; Johann Kolb; Enrico Marchetti; Armando Riccardi; Christian Soenke; Stefan Stroebele

Several designs of future Adaptive Optics (AO) systems propose to use a large Deformable Mirror (DM), regarding the size as well as the number of actuators. Most of the time, there is no focal plane upstream the DM. Therefore, the classical way of calibrating the interaction matrix on an artificial source cannot be applied. Furthermore, the requirements in terms of calibration error budget are tight and the high order modes of such DMs are stiff and hence they achieve only a small stroke. This is why novel ways to determine the system Interaction Matrix (IM) have to be investigated. Several paths have been studied. One solution would be to simulate a synthetic IM. However, calibration on sky is also an option. Different techniques were simulated, tested and optimized on real AO systems. The results are presented in this paper.


Proceedings of SPIE | 2008

ESO adaptive optics facility

Robin Arsenault; Pierre-Yves Madec; Norbert Hubin; Jerome Paufique; Stefan Stroebele; Christian Soenke; R. Donaldson; Enrico Fedrigo; Sylvain Oberti; Sebastien Tordo; Mark Downing; M. Kiekebusch; Ralf Conzelmann; Michel Duchateau; A. Jost; W. Hackenberg; D. Bonaccini Calia; Bernhard Delabre; Remko Stuik; Roberto Biasi; Daniele Gallieni; P. Lazzarini; M. Lelouarn; A. Glindeman

ESO has initiated in June 2004 a concept of Adaptive Optics Facility. One unit 8m telescope of the VLT is upgraded with a 1.1 m convex Deformable Secondary Mirror and an optimized instrument park. The AO modules GALACSI and GRAAL will provide GLAO and LTAO corrections forHawk-I and MUSE. A natural guide star mode is provided for commissioning and maintenance at the telescope. The facility is completed by a Laser Guide Star Facility launching 4 LGS from the telescope centerpiece used for the GLAO and LTAO wavefront sensing. A sophisticated test bench called ASSIST is being designed to allow an extensive testing and characterization phase of the DSM and its AO modules in Europe. Most sub-projects have entered the final design phase and the DSM has entered Manufacturing phase. First light is planned in the course of 2012 and the commissioning phases should be completed by 2013.


Proceedings of SPIE | 2006

MAD star oriented: laboratory results for ground layer and multi-conjugate adaptive optics

Enrico Marchetti; Roland Brast; Bernard Delabre; R. Donaldson; Enrico Fedrigo; Christoph Frank; Norbert Hubin; Johann Kolb; Miska Le Louarn; Jean-Louis Lizon; Sylvain Oberti; Fernando Quirós-Pacheco; Roland Reiss; Joana Santos; Sebastien Tordo; Andrea Baruffolo; Paolo Bagnara; A. Amorim; Jorge Lima

The Multi-Conjugate Adaptive Optics Demonstrator (MAD) built by ESO with the contribution of two external consortia is a powerful test bench for proving the feasibility of Ground Layer (GLAO) and Multi-Conjugate Adaptive Optics (MCAO) techniques both in the laboratory and on the sky. The MAD module will be installed at one of the VLT unit telescope in Paranal observatory to perform on-sky observations. MAD is based on a two deformable mirrors correction system and on two multi-reference wavefront sensors (Star Oriented and Layer Oriented) capable to observe simultaneously some pre-selected configurations of Natural Guide Stars. MAD is expected to correct up to 2 arcmin field of view in K band. MAD is completing the test phase in the Star Oriented mode based on Shack-Hartmann wavefront sensing. The GLAO and MCAO loops have been successfully closed on simulated atmosphere after a long phase of careful system characterization and calibration. In this paper we present the results obtained in laboratory for GLAO and MCAO corrections testing with bright guide star flux in Star Oriented mode paying also attention to the aspects involving the calibration of such a system. A short overview of the MAD system is also given.


Proceedings of SPIE | 2006

The ESO Adaptive Optics Facility

S. Ströbele; Robin Arsenault; Roland Bacon; Roberto Biasi; Domenico Bonaccini-Calia; Mark Downing; Ralf Conzelmann; Bernhard Delabre; R. Donaldson; Michel Duchateau; Simone Esposito; Enrico Fedrigo; Daniele Gallieni; W. Hackenberg; Norbert Hubin; M. Kasper; Markus Kissler-Patig; M. Le Louarn; Richard M. McDermid; Sylvain Oberti; Jerome Paufique; Armando Riccardi; Remko Stuik; Elise Vernet

The Adaptive Optics Facility is a project to convert one VLT-UT into a specialized Adaptive Telescope. The present secondary mirror (M2) will be replaced by a new M2-Unit hosting a 1170 actuators deformable mirror. The 3 focal stations will be equipped with instruments adapted to the new capability of this UT. Two instruments are in development for the 2 Nasmyth foci: Hawk-I with its AO module GRAAL allowing a Ground Layer Adaptive Optics correction and MUSE with GALACSI for GLAO correction and Laser Tomography Adaptive Optics correction. A future instrument still needs to be defined for the Cassegrain focus. Several guide stars are required for the type of adaptive corrections needed and a four Laser Guide Star facility (4LGSF) is being developed in the scope of the AO Facility. Convex mirrors like the VLT M2 represent a major challenge for testing and a substantial effort is dedicated to this. ASSIST, is a test bench that will allow testing of the Deformable Secondary Mirror and both instruments with simulated turbulence. This article describes the Adaptive Optics facility systems composing associated with it.


Proceedings of SPIE | 2004

MACAO-CRIRES: a step toward high-resolution spectroscopy

Jerome Paufique; Peter Biereichel; R. Donaldson; Bernhard Delabre; Enrico Fedrigo; F. Franza; Pierre Gigan; Domingo Gojak; Norbert Hubin; Markus Kasper; Hans-Ulrich Kaeufl; Jean-Louis Lizon; Sylvain Oberti; Jean-Francois Pirard; Eszter Pozna; Joana Santos; Stefan Stroebele

High resolution spectroscopy made an important step ahead 10 years ago, leading for example to the discovery of numerous exoplanets. But the IR did not benefit from this improvement until very recently. CRIRES will provide a dramatic improvement in the 1-5 micron region in this field. Adaptive optics will allow us increasing both flux and angular resolution on its spectra. This paper describes the adaptive optics of CRIRES, its main limitations, its main components, the principle of its calibration with an overview of the methods used and the very first results obtained since it is installed in the laboratory.


Proceedings of SPIE | 2008

Layer oriented wavefront sensor for MAD on sky operations

Carmelo Arcidiacono; Matteo Lombini; Roberto Ragazzoni; Jacopo Farinato; Emiliano Diolaiti; Andrea Baruffolo; Paolo Bagnara; G. Gentile; Laura Schreiber; Enrico Marchetti; Johann Kolb; Sebastien Tordo; Robert Donaldson; Christian Soenke; Sylvain Oberti; Enrico Fedrigo; Elise Vernet; Norbert Hubin

The Multiconjugate Adaptive optics Demonstrator (MAD) had successfully demonstrated on sky both Star Oriented (SO) and Layer Oriented (LO) multiconjugate adaptive optics techniques. While SO has been realized using 3 Shack-Hartmann wavefront sensors (WFS), we designed a multi-pyramid WFS for the LO. The MAD bench accommodates both WFSs and a selecting mirror allows choosing which sensor to use. In the LO approach up to 8 pyramids can be placed on as many reference stars and their light is co-added optically on two different CCDs conjugated at ground and to an high layer. In this paper we discuss LO commissioning phase and on sky operations.


Proceedings of SPIE | 2008

MAD on sky results in star oriented mode

Enrico Marchetti; Roland Brast; Bernard Delabre; R. Donaldson; Enrico Fedrigo; Christoph Frank; Norbert Hubin; Johann Kolb; Jean-Louis Lizon; Massimiliano Marchesi; Sylvain Oberti; Roland Reiss; Christian Soenke; Sebastien Tordo; Andrea Baruffolo; Paolo Bagnara; A. Amorim; Jorge Lima

The Multi-Conjugate Adaptive Optics Demonstrator (MAD) built by ESO with the contribution of two external consortia is a powerful test bench for proving the feasibility of Multi-Conjugate (MCAO) and Ground Layer Adaptive Optics (GLAO) techniques both in the laboratory and on the sky. MAD is based on a two deformable mirrors correction system and on two multi-reference wavefront sensors (Star Oriented and Layer Oriented) capable to observe simultaneously some pre-selected configurations of Natural Guide Stars. MAD corrects up to 2 arcmin field of view in K band. After a long laboratory test phase, it has been installed at the VLT and it successfully performed on-sky demonstration runs on several astronomical targets for evaluating the correction performance under different atmospheric turbulence conditions. In this paper we present the results obtained on the sky in Star Oriented mode for MCAO and GLAO configurations and we correlate them with different atmospheric turbulence parameters. Finally we compare some of the on-sky results with numerical simulations including real turbulence profile measured at the moment of the observations.

Collaboration


Dive into the Sylvain Oberti's collaboration.

Top Co-Authors

Avatar

Enrico Fedrigo

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Jerome Paufique

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Johann Kolb

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Robin Arsenault

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Norbert Hubin

University of California

View shared research outputs
Top Co-Authors

Avatar

R. Donaldson

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Enrico Marchetti

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Miska Le Louarn

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Markus Kasper

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar

Sebastien Tordo

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge