Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerzy Jaskiewicz is active.

Publication


Featured researches published by Jerzy Jaskiewicz.


Biochemical Journal | 2006

Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation

Nam Ho Jeoung; Pengfei Wu; Mandar Joshi; Jerzy Jaskiewicz; Cheryl B. Bock; Robert A. Harris

The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4-/- mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4-/- mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4-/- mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4-/- mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4-/- mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4-/- mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis.


Advances in Enzyme Regulation | 1997

Studies on the regulation of the mitochondrial α-ketoacid dehydrogenase complexes and their kinases

Robert A. Harris; John W. Hawes; Kirill M. Popov; Yu Zhao; Yoshiharu Shimomura; Juichi Sato; Jerzy Jaskiewicz; Thomas D. Hurley

Five mitochondrial protein kinases, all members of a new family of protein kinases, have now been identified, cloned, expressed as recombinant proteins, and partially characterized with respect to catalytic and regulatory properties. Four members of this unique family of eukaryotic protein kinases correspond to pyruvate dehydrogenase kinase isozymes which regulate the activity of the pyruvate dehydrogenase complex, an important regulatory enzyme at the interface between glycolysis and the citric acid cycle. The fifth member of this family corresponds to the branched-chain alpha-ketoacid dehydrogenase kinase, an enzyme responsible for phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex, the most important regulatory enzyme in the pathway for the disposal of branched-chain amino acids. At least three long-term control mechanisms have evolved to conserve branched chain amino acids for protein synthesis during periods of dietary protein insufficiency. Increased expression of the branched-chain alpha-ketoacid dehydrogenase kinase is perhaps the most important because this leads to phosphorylation and nearly complete inactivation of the liver branched-chain alpha-ketoacid dehydrogenase complex. Decreased amounts of the liver branched-chain alpha-ketoacid dehydrogenase complex secondary to a decrease in liver mitochondria also decrease the livers capacity for branched-chain keto acid oxidation. Finally, the number of E1 subunits of the branched-chain alpha-ketoacid dehydrogenase complex is reduced to less than a full complement of 12 heterotetramers per complex in the liver of protein-starved rats. Since the E1 component is rate-limiting for activity and also the component of the complex inhibited by phosphorylation, this decrease in number further limits overall enzyme activity and makes the complex more sensitive to regulation by phosphorylation in this nutritional state. The branched-chain alpha-ketoacid dehydrogenase kinase phosphorylates serine 293 of the E1 alpha subunit of the branched-chain alpha-ketoacid dehydrogenase complex. Site-directed mutagenesis of amino acid residues surrounding serine 293 reveals that arginine 288, histidine 292 and aspartate 296 are critical to dehydrogenase activity, that histidine 292 is critical to binding the coenzyme thiamine pyrophosphate, and that serine 293 exists at or in close proximity to the active site of the dehydrogenase. Alanine scanning mutagenesis of residues in the immediate vicinity of the phosphorylation site (serine 293) indicates that only arginine 288 is required for recognition of serine 293 as a phosphorylation site by the branched-chain alpha-ketoacid dehydrogenase kinase. Phosphorylation appears to inhibit dehydrogenase activity by introducing a negative charge directly into the active site pocket of the E1 dehydrogenase component of the branched-chain alpha-ketoacid dehydrogenase complex. A model based on the X-ray crystal structure of transketolase is being used to predict residues involved in thiamine pyrophosphate binding and to help visualize how phosphorylation within the channel leading to the reactive carbon of thiamine pyrophosphate inhibits catalytic activity. The isoenzymes of pyruvate dehydrogenase kinase differ greatly in terms of their specific activities, kinetic parameters and regulatory properties. Chemically-induced diabetes in the rat induces significant changes in the pyruvate dehydrogenase kinase isoenzyme 2 in liver. Preliminary findings suggest hormonal control of the activity state of the pyruvate dehydrogenase complex may involves tissue specific induced changes in expression of the pyruvate dehydrogenase kinase isoenzymes.


Archives of Biochemistry and Biophysics | 2002

Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms.

Rumi Kobayashi; Taro Murakami; Mariko Obayashi; Naoya Nakai; Jerzy Jaskiewicz; Yoko Fujiwara; Yoshiharu Shimomura; Robert A. Harris

Clofibrate promotes catabolism of branched-chain amino acids by increasing the activity of the branched-chain alpha-keto acid dehydrogenase [BCKDH] complex. Depending upon the sex of the rats, nutritional state, and tissue being studied, clofibrate can affect BCKDH complex activity by three different mechanisms. First, by directly inhibiting BCKDH kinase activity, clofibrate can increase the proportion of the BCKDH complex in the active, dephosphorylated state. This occurs in situations in which the BCKDH complex is largely inactive due to phosphorylation, e.g., in the skeletal muscle of chow-fed rats or in the liver of female rats late in the light cycle. Second, by increasing the levels at which the enzyme components of the BCKDH complex are expressed, clofibrate can increase the total enzymatic activity of the BCKDH complex. This is readily demonstrated in livers of rats fed a low-protein diet, a nutritional condition that induces a decrease in the level of expression of the BCKDH complex. Third, by decreasing the amount of BCKDH kinase expressed and therefore its activity, clofibrate induces an increase in the percentage of the BCKDH complex in the active, dephosphorylated state. This occurs in the livers of rats fed a low-protein diet, a nutritional condition that causes inactivation of the BCKDH complex due to upregulation of the amount of BCKDH kinase. WY-14,643, which, like clofibric acid, is a ligand for the peroxisome-proliferator-activated receptor alpha [PPARalpha], does not directly inhibit BCKDH kinase but produces the same long-term effects as clofibrate on expression of the BCKDH complex and its kinase. Thus, clofibrate is unique in its capacity to stimulate BCAA oxidation through inhibition of BCKDH kinase activity, whereas PPARalpha activators in general promote BCAA oxidation by increasing expression of components of the BCKDH complex and decreasing expression of the BCKDH kinase.


Archives of Biochemistry and Biophysics | 1992

Ethanol and oleate inhibition of α-ketoisovalerate and 3-hydroxyisobutyrate metabolism by isolated hepatocytes

Hongyu Hu; Jerzy Jaskiewicz; Robert A. Harris

Ethanol inhibited glucose synthesis from alpha-ketoisovalerate by isolated rat hepatocytes without significant inhibition of flux through the branched-chain alpha-ketoacid dehydrogenase complex. Accumulation of 3-hydroxyisobutyrate, an intermediate in the catabolism of alpha-ketoisovalerate, was increased by ethanol, indicating inhibition of flux at the level of 3-hydroxyisobutyrate dehydrogenase. 3-Hydroxybutyrate caused the same effects as ethanol, suggesting inhibition was a consequence of an increase in the mitochondrial NADH/NAD+ ratio. Flux through the 3-hydroxyisobutyrate dehydrogenase was more sensitive to regulation by the mitochondrial NADH/NAD+ ratio than flux through the branched-chain alpha-ketoacid dehydrogenase. Oleate also inhibited glucose synthesis from alpha-ketoisovalerate, but marked inhibition of flux through the branched-chain alpha-ketoacid dehydrogenase complex was caused by this substrate.


Advances in Enzyme Regulation | 1992

Purification, characterization, regulation and molecular cloning of mitochondrial protein kinases.

Robert A. Harris; Kirill M. Popov; Yoshiharu Shimomura; Yu Zhao; Jerzy Jaskiewicz; Noriko Nanaumi; Masashige Suzuki

The mitochondrial kinases responsible for the phosphorylation and inactivation of rat heart pyruvate dehydrogenase complex and the rat liver and heart branched-chain alpha-ketoacid dehydrogenase complexes have been purified to homogeneity. The branched-chain alpha-ketoacid dehydrogenase kinase is composed of one subunit with a molecular weight of 44 kDa; pyruvate dehydrogenase kinase has two subunits with molecular weights of 48 (alpha) and 45 kDa (beta). Proteolysis maps of branched-chain alpha-ketoacid dehydrogenase kinase and the two subunits of pyruvate dehydrogenase kinase are different, suggesting that all subunits are different entities. The alpha subunit of the rat heart pyruvate dehydrogenase kinase was selectively cleaved by chymotrypsin with concomitant loss of kinase activity, as previously shown for the bovine kidney enzyme, suggesting that the catalytic activity of pyruvate dehydrogenase kinase resides in this subunit. Polyclonal antibodies against branched-chain alpha-ketoacid dehydrogenase kinase, purified by an epitope selection method, bound only to the 44 kDa polypeptide of the branched-chain alpha-ketoacid dehydrogenase complex, substantiating that the 44 kDa protein corresponds to the kinase for this complex. Both kinases exhibited strong substrate specificity toward their respective complexes and would not inactivate heterologous complexes. The kinases possessed slightly different substrate specificities toward histones. Phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex by its purified kinase was inhibited by alpha-chloroisocaproate and dichloroacetate, established inhibitors of the phosphorylation of the complex. cDNAs encoding the branched-chain alpha-ketoacid dehydrogenase kinase have been isolated from rat heart and rat liver lambda gt11 libraries. This represents the first successful cloning of a mitochondrial protein kinase. Preliminary data suggest that two different isoforms of the kinase may exist in different ratios in various tissues. No evidence was found for induction of the branched-chain alpha-ketoacid dehydrogenase complex nor its kinase by clofibric acid. Rather, clofibric acid is a potent inhibitor of the activity of the branched-chain alpha-ketoacid dehydrogenase kinase and this may be the molecular mechanism responsible for the myotonic effects of clofibric acid in man.


Biochemical Journal | 1998

STARVATION AND DIABETES INCREASE THE AMOUNT OF PYRUVATE DEHYDROGENASE KINASE ISOENZYME 4 IN RAT HEART

Pengfei Wu; Juichi Sato; Yu Zhao; Jerzy Jaskiewicz; Kirill M. Popov; Robert A. Harris


Archives of Biochemistry and Biophysics | 2000

Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues.

Pengfei Wu; Paul V. Blair; Juichi Sato; Jerzy Jaskiewicz; Kirill M. Popov; Robert A. Harris


Journal of Biological Chemistry | 1996

Primary structure and tissue-specific expression of human beta-hydroxyisobutyryl-coenzyme A hydrolase.

John W. Hawes; Jerzy Jaskiewicz; Yoshiharu Shimomura; Boli Huang; Jamie Bunting; Edwin T. Harper; Robert A. Harris


Journal of Biological Chemistry | 1994

Site-directed mutagenesis of phosphorylation sites of the branched chain alpha-ketoacid dehydrogenase complex.

Yu Zhao; John W. Hawes; Kirill M. Popov; Jerzy Jaskiewicz; Yoshiharu Shimomura; David W. Crabb; Robert A. Harris


Archives of Biochemistry and Biophysics | 1995

Dietary Control and Tissue Specific Expression of Branched-Chain α-Ketoacid Dehydrogenase Kinase

Kirill M. Popov; Yu Zhao; Yoshiharu Shimomura; Jerzy Jaskiewicz; Natalia Y. Kedishvili; J. Irwin; Gary W. Goodwin; Robert A. Harris

Collaboration


Dive into the Jerzy Jaskiewicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge