Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natalia Y. Kedishvili is active.

Publication


Featured researches published by Natalia Y. Kedishvili.


Journal of Biological Chemistry | 1995

Diversity of the Pyruvate Dehydrogenase Kinase Gene Family in Humans

Ramadevi Gudi; Melissa M. Bowker-Kinley; Natalia Y. Kedishvili; Yu Zhao; Kirill M. Popov

Recent evidence from this laboratory indicates that at least two isoenzymic forms of pyruvate dehydrogenase kinase (PDK1 and PDK2) may be involved in the regulation of enzymatic activity of mammalian pyruvate dehydrogenase complex by phosphorylation (Popov, K. M., Kedishvili, N. Y., Zhao, Y., Gudi, R., and Harris, R. A.(1994) J. Biol. Chem. 269, 29720-29724). The present study was undertaken to further explore the diversity of the pyruvate dehydrogenase kinase gene family. Here we report the deduced amino acid sequences of three isoenzymic forms of PDK found in humans. In terms of their primary structures, two isoenzymes identified in humans correspond to rat PDK1 and PDK2, whereas a third gene (PDK3) encodes for a new isoenzyme that shares 68% and 67% of amino acid identities with PDK1 and PDK2, respectively. PDK3 cDNA expressed in Escherichia coli directs the synthesis of a polypeptide with a molecular mass of approximately 45,000 Da that possesses catalytic activity toward kinase-depleted pyruvate dehydrogenase. PDK3 appears to have the highest specific activity among the three isoenzymes tested as recombinant proteins. Tissue distribution of all three isoenzymes of human PDK was characterized by Northern blot analysis. The highest amount of PDK2 mRNA was found in heart and skeletal muscle, the lowest amount in placenta and lung. Brain, kidney, pancreas, and liver expressed an intermediate amount of PDK2 (brain > kidney = pancreas > liver). The tissue distribution of PDK1 mRNA differs markedly from PDK2. The message for PDK1 was expressed predominantly in heart with only modest levels of expression in other tissues (skeletal muscle > liver > pancreas > brain > placenta = lung > kidney). In contrast to PDK1 and PDK2, which are expressed in all tissues tested, the message for PDK3 was found almost exclusively in heart and skeletal muscle, indicating that PDK3 may serve specialized functions characteristic of muscle tissues. In all tissues tested thus far, the level of expression of PDK2 mRNA was essentially higher than that of PDK1 and PDK3, consistent with the idea that PDK2 is a major isoenzyme responsible for regulation of pyruvate dehydrogenase in human tissues.


Journal of Biological Chemistry | 1998

cDNA cloning and characterization of a new human microsomal NAD^+-dependent dehydrogenase that oxidizes all-trans-retinol and 3alpha-hydroxysteroids

Wendy H. Gough; Sarah VanOoteghem; Thaw Sint; Natalia Y. Kedishvili

We report the cDNA sequence and catalytic properties of a new member of the short chain dehydrogenase/reductase superfamily. The 1134-base pair cDNA isolated from the human liver cDNA library encodes a 317-amino acid protein, retinol dehydrogenase 4 (RoDH-4), which exhibits the strongest similarity with rat all-trans-retinol dehydrogenases RoDH-1, RoDH-2, and RoDH-3, and mouse cis-retinol/androgen dehydrogenase (≤73% identity). The mRNA for RoDH-4 is abundant in adult liver, where it is translated into RoDH-4 protein, which is associated with microsomal membranes, as evidenced by Western blot analysis. Significant amounts of RoDH-4 message are detected in fetal liver and lung. Recombinant RoDH-4, expressed in microsomes of Sf9 insect cells using BacoluGold Baculovirus system, oxidizes all-trans-retinol and 13-cis-retinol to corresponding aldehydes and oxidizes the 3α-hydroxysteroids androstane-diol and androsterone to dihydrotestosterone and androstanedione, respectively. NAD+ and NADH are the preferred cofactors, with apparent K m values 250–1500 times lower than those for NADP+ and NADPH. All-trans-retinol and 13-cis-retinol inhibit RoDH-4 catalyzed oxidation of androsterone with apparentK i values of 5.8 and 3.5 μm, respectively. All-trans-retinol bound to cellular retinol-binding protein (type I) exhibits a similarK i value of 3.6 μm. Unliganded cellular retinol-binding protein has no effect on RoDH activity. Citral and acyclic isoprenoids also act as inhibitors of RoDH-4 activity. Ethanol is not inhibitory. Thus, we have identified and characterized a sterol/retinol-oxidizing short chain dehydrogenase/reductase that prefers NAD+ and recognizes all-trans-retinol as substrate. RoDH-4 can potentially contribute to the biosynthesis of two powerful modulators of gene expression: retinoic acid from retinol and dihydrotestosterone from 3α-androstane-diol.


Advances in Enzyme Regulation | 1995

A new family of protein kinases- The mitochondrial protein kinases

Robert A. Harris; Kirill M. Popov; Yu Zhao; Natalia Y. Kedishvili; Yoshiharu Shimomura; David W. Crabb

Molecular cloning has provided evidence for a new family of protein kinases in eukaryotic cells. These kinases show no sequence similarity with other eukaryotic protein kinases, but are related by sequence to the histidine protein kinases found in prokaryotes. These protein kinases, responsible for phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase complexes, are located exclusively in mitochondrial matrix space and have most likely evolved from genes originally present in respiration-dependent bacteria endocytosed by primitive eukaryotic cells. Long-term regulatory mechanisms involved in the control of the activities of these two kinases are of considerable interest. Dietary protein deficiency increases the activity of branched-chain alpha-ketoacid dehydrogenase kinase associated with the branched-chain alpha-ketoacid dehydrogenase complex. The amount of branched-chain alpha-ketoacid dehydrogenase kinase protein associated with the branched-chain alpha-ketoacid dehydrogenase complex and the message level for branched-chain alpha-ketoacid dehydrogenase kinase are both greatly increased in the liver of rats starved for protein, suggesting increased expression of the gene encoding branched-chain alpha-ketoacid dehydrogenase kinase. The increase in branched-chain alpha-ketoacid dehydrogenase kinase activity results in greater phosphorylation and lower activity of the branched-chain alpha-ketoacid dehydrogenase complex. The metabolic consequence is conservation of branched chain amino acids for protein synthesis during periods of dietary protein deficiency. Two isoforms of pyruvate dehydrogenase kinase have been identified and cloned. Pyruvate dehydrogenase kinase 1, the first isoform cloned, corresponds to the 48 kDa subunit of the pyruvate dehydrogenase kinase isolated from rat heart tissue. Pyruvate dehydrogenase kinase 2, the second isoform cloned, corresponds to the 45 kDa subunit of this enzyme. In addition, it also appears to correspond to a possibly free or soluble form of pyruvate dehydrogenase kinase that was originally named kinase activator protein. Assuming that differences in kinetic and/or regulatory properties of these isoforms exist, tissue specific expression of these enzymes and/or control of their association with the complex will probably prove to be important for the long term regulation of the activity of the pyruvate dehydrogenase complex. Starvation and the diabetic state are known to greatly increase activity of the pyruvate dehydrogenase kinase in the liver, heart and muscle of the rat. This contributes in these states to the phosphorylation and inactivation of the pyruvate dehydrogenase complex and conservation of pyruvate and lactate for gluconeogenesis.(ABSTRACT TRUNCATED AT 400 WORDS)


Biochimica et Biophysica Acta | 1992

Coenzyme A- and NADH-dependent esterase activity of methylmalonate semialdehyde dehydrogenase

Kirill M. Popov; Natalia Y. Kedishvili; Robert A. Harris

Methylmalonate semialdehyde dehydrogenase purified to homogeneity from rat liver possesses, in addition to its coupled aldehyde dehydrogenase and CoA ester synthetic activity, the ability to hydrolyze p-nitrophenyl acetate. The following observations suggest that this activity is an active site phenomenon: (a) p-nitrophenyl acetate hydrolysis was inhibited by malonate semialdehyde, substrate for the dehydrogenase reaction; (b) p-nitrophenyl acetate was a strong competitive inhibitor of the dehydrogenase activity; (c) NAD+ and NADH activated the esterase activity; (d) coenzyme A, acceptor of acyl groups in the dehydrogenase reaction, accelerated the esterase activity; and (e) the product of the esterase reaction proceeding in the presence of coenzyme A was acetyl-CoA. These findings suggest that an S-acyl enzyme (thioester intermediate) is likely common to both the esterase reaction and the aldehyde dehydrogenase/CoA ester synthetic reaction.


Advances in Experimental Medicine and Biology | 1996

Role of Alcohol Dehydrogenases in Steroid and Retinoid Metabolism

Natalia Y. Kedishvili; Carol L. Stone; Kirill M. Popov; Ellen A. G. Chernoff

Retinoid and steroid hormones play an important role in the regulation of differentiation and maintenance of a wide range of animal tissues. These tissues include reproductive organs, liver, kidney, heart, brain, and skin of species from fish to humans. Several isozymes of cytosolic NAD+-dependent 40 kDa subunit molecular weight alcohol dehydrogenases catalyze oxidation and reduction of retinoid and steroid substrates in vitro. The isozymes are grouped into classes based on the similarities in amino acid sequence and their substrate specificities. Currently, a total of six classes of mammalian ADHs are known (Jornvall and Hoog, 1995). Each class has a characteristic tissue-specific and developmental pattern of expression (Edenberg and Bosron, 1996). Class I ADHs are basic isozymes with a wide range of Km for ethanol (0.05–36 mM). In humans, class I is comprised of multiple molecular forms, β1β1, β2β2, β3β3, γ1γ1, γ2γ2, α α, and their heterodimers. During development, ᾲᾳ is the first ADH isozyme detectable in fetal liver. β-ADH appears by mid-gestation, and γ-ADH is first detected about six month after birth. Human class II π-ADH has a relatively high KM for ethanol (34 mM) and is found in fetal and adult liver. The ubiquitously expressed class III ADH, also known as glutathione-dependent formaldehyde dehydrogenase, is not saturable with ethanol and is not active with either steroid or retinoid alcohols. Human class IV σ-ADH exhibits high KM for ethanol (28 mM) and is present in the adult stomach, esophagus and epithelium. In mice embryos, class IV ADH is detected on day 7.5 of development in the craniofacial region as well as trunk and forelimb bud mesenchyme (Ang, H.L. et al., 1996). Little is known about the catalytic properties of human class V and deermouse class VI ADH isozymes.


Archives of Biochemistry and Biophysics | 1991

The effect of ligand binding on the proteolytic pattern of methylmalonate semialdehyde dehydrogenase

Natalia Y. Kedishvili; Kirill M. Popov; Robert A. Harris

Native rat liver methylmalonate semialdehyde dehydrogenase was proteolyzed by lysylendopeptidase C, chymotrypsin, and trypsin to generate different cleavage fragments of molecular masses: 50, 8, 55, 44, 39, 53, 45, and 40 kDa. A proteolytic cleavage map of MMSDH was constructed based on sequencing data and a comparison of appearance and degradation rates of the different protein fragments as shown by SDS-PAGE. NAD+ was highly effective as a protector against proteolysis in both the N-terminal and the C-terminal parts of the intact enzyme. NADH did not efficiently protect the intact enzyme; however, it stabilized proteolytic fragment L50 from further degradation. This suggests that the NAD(+)-binding domain is not destroyed by cleavage of the N-terminal part of MMSDH. CoA had no effect on the proteolytic cleavage patterns of MMSDH. However, CoA esters reduced the protective effect of NAD+ with an order of effectiveness of acetyl-CoA greater than propionyl-CoA greater than butyryl-CoA. p-Nitrophenyl acetate, substrate for esterase activity by the enzyme, partially prevented the protective effect of NAD+ against proteolysis. These results suggest that S-acylation of the enzyme prevents a stabilizing conformational change induced in MMSDH by NAD+ binding.


Advances in Experimental Medicine and Biology | 1995

Cloning and expression of a human stomach alcohol dehydrogenase isozyme

Natalia Y. Kedishvili; William F. Bosron; Carol L. Stone; Cara F. Peggs; Holly R. Thomasson; Kirill M. Popov; Lucinda G. Carr; Thomas D. Hurley; Howard J. Edenberg; Ting-Kai Li

In humans, there is a family of NAD+- and zinc-dependent alcohol dehydrogenases (E.C. 1.1.1.1) that exhibit broad substrate specificity toward aliphatic alcohols (Vallee and Bazzone, 1983, Smith, 1986, and Bosron et al., 1993). The various isozyme subunits are encoded by at least 6 different gene loci (ADH1 through ADH6). Most recently, a new isozyme called σ-ADH or μ-ADH has been isolated from human stomach tissue that has a high K m (about 30 mM) and relatively high catalytic efficiency for ethanol (k c /K m ∼ 52 min-1mM-1)(Wang et al., 1990, Stone et al, 1993, Moreno and Pares, 1991). One or more isozymes with similar electrophoretic mobility are found in the esophagus (Yin et al., 1990).


Advances in Experimental Medicine and Biology | 1993

Evolutionary Relationships of Branched Chain and Non-specific Alcohol and Aldehyde Dehydrogenases

David W. Crabb; Natalia Y. Kedishvili; Kirill M. Popov; Paul Rougraff; Yu Zhao; Robert A. Harris

As more protein sequences have become available in recent years, it has become clear that they can be grouped in families and superfamilies. These groupings may represent conservation of structural motifs over time or convergent evolution; nonetheless, analysis of the sequences can point to important residues and regions involved in protein function. This information can direct site-specific modifications of the proteins to study function and can also help to identify the function of unknown proteins discovered by cloning techniques.


Advances in Enzyme Regulation | 1993

Molecular cloning of the branched-chain α-keto acid dehydrogenase kinase and the CoA-dependent methylmalonate semialdehyde dehydrogenase

Robert A. Harris; Kirill M. Popov; Natalia Y. Kedishvili; Yu Zhao; Yoshiharu Shimomura; Brett Robbins; David W. Crabb

The complete amino acid sequence of rat liver CoA-dependent methylmalonate semialdehyde dehydrogenase, the enzyme responsible for the oxidative decarboxylation of malonate- and methylmalonate semialdehydes to acetyl- and propionyl-CoA in the distal portions of the valine and pyrimidine catabolic pathways, has been deduced from overlapping cDNAs obtained by screening a lambda gt11 library with nondegenerate oligonucleotide probes synthesized according to PCR-amplified portions coding for the N-terminal amino acid sequence of the enzyme. Although unique because of its requirement for coenzyme A, the methylmalonate semialdehyde dehydrogenase clearly belongs to the aldehyde dehydrogenase superfamily of enzymes. Quantitation of mRNA and protein levels indicates tissue-specific expression of methylmalonate semialdehyde dehydrogenase. A large increase in expression of methylmalonate semialdehyde dehydrogenase occurs during 3T3-L1 preadipocyte differentiation into adipocytes. The complete amino acid sequence of rat liver branched-chain alpha-ketoacid dehydrogenase kinase, the enzyme responsible for phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex, was deduced from a cDNA cloned by a procedure similar to that described above for the methylmalonate semialdehyde dehydrogenase. Expression of the cDNA in E. coli yielded a protein that phosphorylated and inactivated the branched-chain alpha-ketoacid dehydrogenase complex. Very little sequence similarity between branched-chain alpha-ketoacid dehydrogenase kinase and other eukaryotic protein kinases could be identified. However, a high degree of similarity within subdomains characteristic of prokaryotic histidine protein kinases was apparent. Thus, this first mitochondrial protein kinase to be cloned appears closer, evolutionarily, to the prokaryotic histidine protein kinases than eukaryotic ser/thr protein kinases.


Journal of Biological Chemistry | 1997

Purification and Cloning of a Broad Substrate Specificity Human Liver Carboxylesterase That Catalyzes the Hydrolysis of Cocaine and Heroin

Evgenia V. Pindel; Natalia Y. Kedishvili; Trent L. Abraham; Monica R. Brzezinski; Jing Zhang; Robert A. Dean; William F. Bosron

Collaboration


Dive into the Natalia Y. Kedishvili's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge