Jessica C. Gardner
UCL Institute of Ophthalmology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jessica C. Gardner.
Human Molecular Genetics | 2012
Tom R. Webb; David A. Parfitt; Jessica C. Gardner; Ariadna Martinez; Dalila Bevilacqua; Alice E. Davidson; Ilaria Zito; Jacob Ressa; Marina Apergi; Nele Schwarz; Naheed Kanuga; Michel Michaelides; Michael E. Cheetham; Michael B. Gorin; Alison J. Hardcastle
X-linked retinitis pigmentosa (XLRP) is genetically heterogeneous with two causative genes identified, RPGR and RP2. We previously mapped a locus for a severe form of XLRP, RP23, to a 10.71 Mb interval on Xp22.31-22.13 containing 62 genes. Candidate gene screening failed to identify a causative mutation, so we adopted targeted genomic next-generation sequencing of the disease interval to determine the molecular cause of RP23. No coding variants or variants within or near splice sites were identified. In contrast, a variant deep within intron 9 of OFD1 increased the splice site prediction score 4 bp upstream of the variant. Mutations in OFD1 cause the syndromic ciliopathies orofaciodigital syndrome-1, which is male lethal, Simpson-Golabi-Behmel syndrome type 2 and Joubert syndrome. We tested the effect of the IVS9+706A>G variant on OFD1 splicing in vivo. In RP23 patient-derived RNA, we detected an OFD1 transcript with the insertion of a cryptic exon spliced between exons 9 and 10 causing a frameshift, p.N313fs.X330. Correctly spliced OFD1 was also detected in patient-derived RNA, although at reduced levels (39%), hence the mutation is not male lethal. Our data suggest that photoreceptors are uniquely susceptible to reduced expression of OFD1 and that an alternative disease mechanism can cause XLRP. This disease mechanism of reduced expression for a syndromic ciliopathy gene causing isolated retinal degeneration is reminiscent of CEP290 intronic mutations that cause Leber congenital amaurosis, and we speculate that reduced dosage of correctly spliced ciliopathy genes may be a common disease mechanism in retinal degenerations.
Human Gene Therapy | 2013
Artur V. Cideciyan; Robert B. Hufnagel; Joseph Carroll; Alexander Sumaroka; Xunda Luo; Sharon B. Schwartz; Alfredo Dubra; Megan E. Land; Michel Michaelides; Jessica C. Gardner; Alison J. Hardcastle; Anthony T. Moore; Robert A. Sisk; Zubair M. Ahmed; Susanne Kohl; Bernd Wissinger; Samuel G. Jacobson
Human X-linked blue-cone monochromacy (BCM), a disabling congenital visual disorder of cone photoreceptors, is a candidate disease for gene augmentation therapy. BCM is caused by either mutations in the red (OPN1LW) and green (OPN1MW) cone photoreceptor opsin gene array or large deletions encompassing portions of the gene array and upstream regulatory sequences that would predict a lack of red or green opsin expression. The fate of opsin-deficient cone cells is unknown. We know that rod opsin null mutant mice show rapid postnatal death of rod photoreceptors. Using in vivo histology with high-resolution retinal imaging, we studied a cohort of 20 BCM patients (age range 5-58) with large deletions in the red/green opsin gene array. Already in the first years of life, retinal structure was not normal: there was partial loss of photoreceptors across the central retina. Remaining cone cells had detectable outer segments that were abnormally shortened. Adaptive optics imaging confirmed the existence of inner segments at a spatial density greater than that expected for the residual blue cones. The evidence indicates that human cones in patients with deletions in the red/green opsin gene array can survive in reduced numbers with limited outer segment material, suggesting potential value of gene therapy for BCM.
American Journal of Human Genetics | 2010
Jessica C. Gardner; Tom R. Webb; Naheed Kanuga; Anthony G. Robson; Graham E. Holder; Andrew Stockman; Caterina Ripamonti; Neil D. Ebenezer; Olufunmilola Ogun; Sophie Devery; Genevieve A. Wright; Eamonn R. Maher; Michael E. Cheetham; Anthony T. Moore; Michel Michaelides; Alison J. Hardcastle
X-linked cone and cone-rod dystrophies (XLCOD and XLCORD) are a heterogeneous group of progressive disorders that solely or primarily affect cone photoreceptors. Mutations in exon ORF15 of the RPGR gene are the most common underlying cause. In a previous study, we excluded RPGR exon ORF15 in some families with XLCOD. Here, we report genetic mapping of XLCOD to Xq26.1-qter. A significant LOD score was detected with marker DXS8045 (Z(max) = 2.41 [theta = 0.0]). The disease locus encompasses the cone opsin gene array on Xq28. Analysis of the array revealed a missense mutation (c. 529T>C [p. W177R]) in exon 3 of both the long-wavelength-sensitive (LW, red) and medium-wavelength-sensitive (MW, green) cone opsin genes that segregated with disease. Both exon 3 sequences were identical and were derived from the MW gene as a result of gene conversion. The amino acid W177 is highly conserved in visual and nonvisual opsins across species. We show that W177R in MW opsin and the equivalent W161R mutation in rod opsin result in protein misfolding and retention in the endoplasmic reticulum. We also demonstrate that W177R misfolding, unlike the P23H mutation in rod opsin that causes retinitis pigmentosa, is not rescued by treatment with the pharmacological chaperone 9-cis-retinal. Mutations in the LW/MW cone opsin gene array can, therefore, lead to a spectrum of disease, ranging from color blindness to progressive cone dystrophy (XLCOD5).
American Journal of Human Genetics | 2012
Tom R. Webb; Mar Matarin; Jessica C. Gardner; Dan Kelberman; Hala Hassan; Wei Ang; Michel Michaelides; Jonathan B Ruddle; Craig E. Pennell; Seyhan Yazar; Chiea C. Khor; Tin Aung; M Yogarajah; Anthony G. Robson; Graham E. Holder; Michael E. Cheetham; Elias I. Traboulsi; Anthony T. Moore; Jane C. Sowden; Sanjay M. Sisodiya; David A. Mackey; Stephen J. Tuft; Alison J. Hardcastle
X-linked megalocornea (MGC1) is an ocular anterior segment disorder characterized by an increased cornea diameter and deep anterior chamber evident at birth and later onset of mosaic corneal degeneration (shagreen), arcus juvenilis, and presenile cataracts. We identified copy-number variation, frameshift, missense, splice-site and nonsense mutations in the Chordin-like 1 gene (CHRDL1) on Xq23 as the cause of the condition in seven MGC1 families. CHRDL1 encodes ventroptin, a bone morphogenic protein antagonist with a proposed role in specification of topographic retinotectal projections. Electrophysiological evaluation revealed mild generalized cone system dysfunction and, in one patient, an interhemispheric asymmetry in visual evoked potentials. We show that CHRDL1 is expressed in the developing human cornea and anterior segment in addition to the retina. We explored the impact of loss of ventroptin function on brain function and morphology in vivo. CHRDL1 is differentially expressed in the human fetal brain, and there is high expression in cerebellum and neocortex. We show that MGC1 patients have a superior cognitive ability despite a striking focal loss of myelination of white matter. Our findings reveal an unexpected requirement for ventroptin during anterior segment development and the consequences of a lack of function in the retina and brain.
Human Mutation | 2014
Jessica C. Gardner; Gerald Liew; Yinghua Quan; Burcu Ermetal; Hisao Ueyama; Alice E. Davidson; Nele Schwarz; Naheed Kanuga; Ravinder Chana; Eamonn R. Maher; Andrew R. Webster; Graham E. Holder; Anthony G. Robson; Michael E. Cheetham; Jan Liebelt; Jonathan B Ruddle; Anthony T. Moore; Michel Michaelides; Alison J. Hardcastle
Mutations in the OPN1LW (L‐) and OPN1MW (M‐)cone opsin genes underlie a spectrum of cone photoreceptor defects from stationary loss of color vision to progressive retinal degeneration. Genotypes of 22 families with a range of cone disorders were grouped into three classes: deletions of the locus control region (LCR); missense mutation (p.Cys203Arg) in an L‐/M‐hybrid gene; and exon 3 single‐nucleotide polymorphism (SNP) interchange haplotypes in an otherwise normal gene array. Moderate‐to‐high myopia was observed in all mutation categories. Individuals with LCR deletions or p.Cys203Arg mutations were more likely to have nystagmus and poor vision, with disease progression in some p.Cys203Arg patients. Three disease‐associated exon 3 SNP haplotypes encoding LIAVA, LVAVA, or MIAVA were identified in our cohort. These patients were less likely to have nystagmus but more likely to show progression, with all patients over the age of 40 years having marked macular abnormalities. Previously, the haplotype LIAVA has been shown to result in exon 3 skipping. Here, we show that haplotypes LVAVA and MIAVA also result in aberrant splicing, with a residual low level of correctly spliced cone opsin. The OPN1LW/OPN1MW:c.532A>G SNP, common to all three disease‐associated haplotypes, appears to be principally responsible for this mutational mechanism.
PLOS ONE | 2014
Alice E. Davidson; Sek-Shir Cheong; Pirro G. Hysi; Cristina Venturini; Vincent Plagnol; Jonathan B Ruddle; Hala Ali; Nicole Carnt; Jessica C. Gardner; Hala Hassan; Else Gade; Lisa S. Kearns; Anne Marie Jelsig; Marie Restori; Tom R. Webb; David Laws; Michael Cosgrove; Jens Michael Hertz; Isabelle Russell-Eggitt; Daniela T. Pilz; Christopher J. Hammond; Stephen J. Tuft; Alison J. Hardcastle
We describe novel CHRDL1 mutations in ten families with X-linked megalocornea (MGC1). Our mutation-positive cohort enabled us to establish ultrasonography as a reliable clinical diagnostic tool to distinguish between MGC1 and primary congenital glaucoma (PCG). Megalocornea is also a feature of Neuhäuser or megalocornea-mental retardation (MMR) syndrome, a rare condition of unknown etiology. In a male patient diagnosed with MMR, we performed targeted and whole exome sequencing (WES) and identified a novel missense mutation in CHRDL1 that accounts for his MGC1 phenotype but not his non-ocular features. This finding suggests that MMR syndrome, in some cases, may be di- or multigenic. MGC1 patients have reduced central corneal thickness (CCT); however no X-linked loci have been associated with CCT, possibly because the majority of genome-wide association studies (GWAS) overlook the X-chromosome. We therefore explored whether variants on the X-chromosome are associated with CCT. We found rs149956316, in intron 6 of CHRDL1, to be the most significantly associated single nucleotide polymorphism (SNP) (p = 6.81×10−6) on the X-chromosome. However, this association was not replicated in a smaller subset of whole genome sequenced samples. This study highlights the importance of including X-chromosome SNP data in GWAS to identify potential loci associated with quantitative traits or disease risk.
Investigative Ophthalmology & Visual Science | 2016
Emily J Patterson; Melissa A. Wilk; Melissa Kasilian; Michael Ring; Robert B. Hufnagel; James Tee; Angelos Kalitzeos; Jessica C. Gardner; Zubair M. Ahmed; Robert A. Sisk; Michael Larsen; Stacy A. Sjoberg; Thomas B. Connor; Alfredo Dubra; Jay Neitz; Alison J. Hardcastle; Maureen Neitz; Michel Michaelides; Joseph Carroll
Purpose Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. Methods We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. Results There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Conclusions Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus.
Advances in Experimental Medicine and Biology | 2012
Jessica C. Gardner; Tom R. Webb; Naheed Kanuga; Anthony G. Robson; Graham E. Holder; Andrew Stockman; Caterina Ripamonti; Neil D. Ebenezer; Olufunmilola Ogun; Sophie Devery; Genevieve A. Wright; Eamonn R. Maher; Michael E. Cheetham; Anthony T. Moore; Michel Michaelides; Alison J. Hardcastle
X-linked cone and cone-rod dystrophies (XLCOD and XLCORD) are an inherited group of retinal disorders primarily involving cone photoreceptors. The most common cause is mutation of RPGR. In a British family with XLCOD, we mapped the disorder to Xq26.1-qter, excluding RPGR and other known retinal degeneration genes. The cone opsin gene array on Xq28 was a positional candidate locus. A novel missense mutation (c.529T > C; p.W177R) was identified in exon 3 of both the long wavelength-sensitive (OPN1LW; LW, red) and medium wavelength-sensitive (OPN1MW; MW, green) cone opsin genes, which segregated with disease. Exon 3 sequences of both genes were identical, derived from the OPN1MW gene by partial gene conversion. The amino acid W177 is conserved in all opsins across species. We have shown that W177R in MW opsin results in protein misfolding and retention in the endoplasmic reticulum (ER). Mutations in the OPN1LW /OPN1MW cone opsin gene array can therefore cause a spectrum of phenotypes, from colour blindness to progressive cone dystrophy (XLCOD5).
Human Mutation | 2018
Alessia Fiorentino; Kaoru Fujinami; Gavin Arno; Anthony G. Robson; Nikolas Pontikos; Monica Armengol; Vincent Plagnol; Takaaki Hayashi; Takeshi Iwata; Matthew O. Parker; Tom Fowler; Augusto Rendon; Jessica C. Gardner; Robert H. Henderson; Michael E. Cheetham; Andrew R. Webster; Michel Michaelides; Alison J. Hardcastle
Retinal dystrophies are a heterogeneous group of disorders of visual function leading to partial or complete blindness. We report the genetic basis of an unusual retinal dystrophy in five families with affected females and no affected males. Heterozygous missense variants were identified in the X‐linked phosphoribosyl pyrophosphate synthetase 1 (PRPS1) gene: c.47C > T, p.(Ser16Phe); c.586C > T, p.(Arg196Trp); c.641G > C, p.(Arg214Pro); and c.640C > T, p.(Arg214Trp). Missense variants in PRPS1 are usually associated with disease in male patients, including Arts syndrome, Charcot–Marie–Tooth, and nonsyndromic sensorineural deafness. In our study families, affected females manifested a retinal dystrophy with interocular asymmetry. Three unrelated females from these families had hearing loss leading to a diagnosis of Usher syndrome. Other neurological manifestations were also observed in three individuals. Our data highlight the unexpected X‐linked inheritance of retinal degeneration in females caused by variants in PRPS1 and suggest that tissue‐specific skewed X‐inactivation or variable levels of pyrophosphate synthetase‐1 deficiency are the underlying mechanism(s). We speculate that the absence of affected males in the study families suggests that some variants may be male embryonic lethal when inherited in the hemizygous state. The unbiased nature of next‐generation sequencing enables all possible modes of inheritance to be considered for association of gene variants with novel phenotypic presentation.
Investigative Ophthalmology & Visual Science | 2018
Emily J Patterson; Angelos Kalitzeos; Melissa Kasilian; Jessica C. Gardner; Jay Neitz; Alison J. Hardcastle; Maureen Neitz; Joseph Carroll; Michel Michaelides
Purpose To assess residual cone structure in subjects with mutations in exon 2, 3, and 4 of the OPN1LW or OPN1MW opsin. Methods Thirteen males had their OPN1LW/OPN1MW opsin genes characterized. The cone mosaic was imaged using both confocal and nonconfocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO), and retinal thickness was evaluated using optical coherence tomography (OCT). Six subjects completed serial imaging over a maximum period of 18 months and cone density was measured across imaging sessions. Results Ten subjects had an OPN1LW/OPN1MW “interchange” opsin mutation designated as LIAVA or LVAVA, which both introduce exon 3 splicing defects leading to a lack of functional photopigment in cones expressing LIAVA and greatly reduced functional photopigment in cones expressing LVAVA. Despite disrupted cone reflectivity and reduced numerosity, residual inner segments could be visualized. Similar patterns were observed in individuals with an exon 2 insertion, or an exon 4 splice defect, both of which are also expected to produce cones that are devoid of functional opsin protein. OCT revealed variably reduced retinal thickness. A significant inverse relationship was found between the proportion of waveguiding cones and axial length. Conclusions Split-detection imaging revealed that the altered appearance of the cone mosaic in confocal images for subjects with exon 2, 3, and 4 mutations was generally due to disrupted waveguiding, rather than structural loss, making them possible candidates for gene therapy to restore cone function. The relative fraction of waveguiding cones was highly variable across subjects, which appears to influence emmetropization in these subjects.