Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica E. Bolden is active.

Publication


Featured researches published by Jessica E. Bolden.


Nature Reviews Drug Discovery | 2006

Anticancer activities of histone deacetylase inhibitors

Jessica E. Bolden; Melissa J. Peart; Ricky W. Johnstone

Histone deacetylases (HDACs) are enzymes involved in the remodelling of chromatin, and have a key role in the epigenetic regulation of gene expression. In addition, the activity of non-histone proteins can be regulated through HDAC-mediated hypo-acetylation. In recent years, inhibition of HDACs has emerged as a potential strategy to reverse aberrant epigenetic changes associated with cancer, and several classes of HDAC inhibitors have been found to have potent and specific anticancer activities in preclinical studies. However, such studies have also indicated that the effects of HDAC inhibitors could be considerably broader and more complicated than originally understood. Here we summarize recent advances in the understanding of the molecular events that underlie the anticancer effects of HDAC inhibitors, and discuss how such information could be used in optimizing the development and application of these agents in the clinic, either as monotherapies or in combination with other anticancer drugs.


Genes & Development | 2011

Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity

Yuchen Chien; Claudio Scuoppo; Xiaowo Wang; Xueping Fang; Brian M. Balgley; Jessica E. Bolden; Prem K. Premsrirut; Weijun Luo; Agustin Chicas; Cheng S. Lee; Scott C. Kogan; Scott W. Lowe

Cellular senescence acts as a potent barrier to tumorigenesis and contributes to the anti-tumor activity of certain chemotherapeutic agents. Senescent cells undergo a stable cell cycle arrest controlled by RB and p53 and, in addition, display a senescence-associated secretory phenotype (SASP) involving the production of factors that reinforce the senescence arrest, alter the microenvironment, and trigger immune surveillance of the senescent cells. Through a proteomics analysis of senescent chromatin, we identified the nuclear factor-κB (NF-κB) subunit p65 as a major transcription factor that accumulates on chromatin of senescent cells. We found that NF-κB acts as a master regulator of the SASP, influencing the expression of more genes than RB and p53 combined. In cultured fibroblasts, NF-κB suppression causes escape from immune recognition by natural killer (NK) cells and cooperates with p53 inactivation to bypass senescence. In a mouse lymphoma model, NF-κB inhibition bypasses treatment-induced senescence, producing drug resistance, early relapse, and reduced survival. Our results demonstrate that NF-κB controls both cell-autonomous and non-cell-autonomous aspects of the senescence program and identify a tumor-suppressive function of NF-κB that contributes to the outcome of cancer therapy.


Cell | 2013

Non-Cell-Autonomous Tumor Suppression by p53

Amaia Lujambio; Leila Akkari; Janelle Simon; Danielle Grace; Darjus F. Tschaharganeh; Jessica E. Bolden; Zhen Zhao; Vishal Thapar; Johanna A. Joyce; Valery Krizhanovsky; Scott W. Lowe

The p53 tumor suppressor can restrict malignant transformation by triggering cell-autonomous programs of cell-cycle arrest or apoptosis. p53 also promotes cellular senescence, a tumor-suppressive program that involves stable cell-cycle arrest and secretion of factors that modify the tissue microenvironment. In the presence of chronic liver damage, we show that ablation of a p53-dependent senescence program in hepatic stellate cells increases liver fibrosis and cirrhosis associated with reduced survival and enhances the transformation of adjacent epithelial cells into hepatocellular carcinoma. p53-expressing senescent stellate cells release factors that skew macrophage polarization toward a tumor-inhibiting M1-state capable of attacking senescent cells in culture, whereas proliferating p53-deficient stellate cells secrete factors that stimulate polarization of macrophages into a tumor-promoting M2-state and enhance the proliferation of premalignant cells. Hence, p53 can act non-cell autonomously to suppress tumorigenesis by promoting an antitumor microenvironment, in part, through secreted factors that modulate macrophage function.


Cancer Letters | 2009

Enhancing the apoptotic and therapeutic effects of HDAC inhibitors

Ailsa J. Frew; Ricky W. Johnstone; Jessica E. Bolden

Histone deacetylase inhibitors (HDACi) are anti-cancer drugs that have moved rapidly through clinical development and in 2006 vorinostat (SAHA, Zolinza) was given FDA approval for the treatment of cutaneous T cell lymphoma. Class I, II and IV HDACs that are targets for these compounds deacetylate histone proteins, resulting in chromatin remodelling and altered gene transcription. In addition, numerous non-histone proteins are modified by acetylation and the inhibition of HDAC activity can therefore affect various molecular processes. This broad effect on protein function may account for the pleiotropic anti-tumor responses elicited by HDACi that include induction of tumor cell apoptosis, cell cycle arrest, differentiation and senescence, modulation of immune responses and altered angiogenesis. The ability of HDACi to selectively induce tumor cells to undergo apoptosis is important for the therapeutic efficacy observed in pre-clinical models. Moreover, HDACi can augment the apoptotic effects of other anti-cancer agents that have diverse molecular targets. While HDACi are promising anti-cancer drugs, particularly given the scope to combine HDACi with other agents, identifying the key molecular events that determine the biological response of cells to HDACi treatment remains a challenge. Herein we focus on HDACi-induced apoptosis and discuss the various proteins and pathways that are affected by HDACi to mediate this programmed cell death response. In addition, we highlight the ability of HDACi to synergise with other anti-cancer agents to potently kill tumor cells and discuss the possible molecular processes that underpin the combination effect.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Combination therapy of established cancer using a histone deacetylase inhibitor and a TRAIL receptor agonist

Ailsa J. Frew; Ralph K. Lindemann; Ben P. Martin; Christopher J. Clarke; Janelle Sharkey; Desiree A. Anthony; Kellie-Marie Banks; Nicole M. Haynes; Pradnya Gangatirkar; Kym Stanley; Jessica E. Bolden; Kazuyoshi Takeda; Hideo Yagita; J. Paul Secrist; Mark J. Smyth; Ricky W. Johnstone

Histone deacetylase inhibitors (HDACi) and agents such as recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and agonistic anti-TRAIL receptor (TRAIL-R) antibodies are anticancer agents that have shown promise in preclinical settings and in early phase clinical trials as monotherapies. Although HDACi and activators of the TRAIL pathway have different molecular targets and mechanisms of action, they share the ability to induce tumor cell-selective apoptosis. The ability of HDACi to induce expression of TRAIL-R death receptors 4 and 5 (DR4/DR5), and induce tumor cell death via the intrinsic apoptotic pathway provides a molecular rationale to combine these agents with activators of the TRAIL pathway that activate the alternative (death receptor) apoptotic pathway. Herein, we demonstrate that the HDACi vorinostat synergizes with the mouse DR5-specific monoclonal antibody MD5-1 to induce rapid and robust tumor cell apoptosis in vitro and in vivo. Importantly, using a preclinical mouse breast cancer model, we show that the combination of vorinostat and MD5-1 is safe and induces regression of established tumors, whereas single agent treatment had little or no effect. Functional analyses revealed that rather than mediating enhanced tumor cell apoptosis via the simultaneous activation of the intrinsic and extrinsic apoptotic pathways, vorinostat augmented MD5-1-induced apoptosis concomitant with down-regulation of the intracellular apoptosis inhibitor cellular-FLIP (c-FLIP). These data demonstrate that combination therapies involving HDACi and activators of the TRAIL pathway can be efficacious for the treatment of cancer in experimental mouse models.


Blood | 2009

The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy

Leigh Ellis; Michael Bots; Ralph K. Lindemann; Jessica E. Bolden; Andrea Newbold; Leonie A. Cluse; Clare L. Scott; Andreas Strasser; Peter Atadja; Scott W. Lowe; Ricky W. Johnstone

LAQ824 and LBH589 (panobinostat) are histone deacetylase inhibitors (HDACi) developed as cancer therapeutics and we have used the Emu-myc lymphoma model to identify the molecular events required for their antitumor effects. Induction of tumor cell death was necessary for these agents to mediate therapeutic responses in vivo and both HDACi engaged the intrinsic apoptotic cascade that did not require p53. Death receptor pathway blockade had no effect on the therapeutic activities of LAQ824 and LBH589; however, overexpression of Bcl-2 or Bcl-X(L) protected lymphoma cells from HDACi-induced killing and suppressed their therapeutic activities. Deletion of Apaf-1 or Caspase-9 delayed HDACi-induced lymphoma killing in vitro and in vivo, associated with suppression of many biochemical indicators of apoptosis, but did not provide long-term resistance to these agents and failed to inhibit their therapeutic activities. Emu-myc lymphomas lacking a functional apoptosome displayed morphologic and biochemical features of autophagy after treatment with LAQ824 and LBH589, indicating that, in the absence of a complete intrinsic apoptosis pathway involving apoptosome formation, these HDACi can still mediate a therapeutic response. Our data indicate that damage to the mitochondria is the key event necessary for LAQ824 and LBH589 to mediate tumor cell death and a robust therapeutic response.


Cell Death and Disease | 2013

HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses

Jessica E. Bolden; Wei Shi; Jankowski K; Chin-Yi Kan; Leonie A. Cluse; Ben P. Martin; Karen L. MacKenzie; Gordon K. Smyth; Ricky W. Johnstone

The identification of recurrent somatic mutations in genes encoding epigenetic enzymes has provided a strong rationale for the development of compounds that target the epigenome for the treatment of cancer. This notion is supported by biochemical studies demonstrating aberrant recruitment of epigenetic enzymes such as histone deacetylases (HDACs) and histone methyltransferases to promoter regions through association with oncogenic fusion proteins such as PML-RARα and AML1-ETO. HDAC inhibitors (HDACi) are potent inducers of tumor cell apoptosis; however, it remains unclear why tumor cells are more sensitive to HDACi-induced cell death than normal cells. Herein, we assessed the biological and molecular responses of isogenic normal and transformed cells to the FDA-approved HDACi vorinostat and romidepsin. Both HDACi selectively killed cells of diverse tissue origin that had been transformed through the serial introduction of different oncogenes. Time-course microarray expression profiling revealed that normal and transformed cells transcriptionally responded to vorinostat treatment. Over 4200 genes responded differently to vorinostat in normal and transformed cells and gene ontology and pathway analyses identified a tumor-cell-selective pro-apoptotic gene-expression signature that consisted of BCL2 family genes. In particular, HDACi induced tumor-cell-selective upregulation of the pro-apoptotic gene BMF and downregulation of the pro-survival gene BCL2A1 encoding BFL-1. Maintenance of BFL-1 levels in transformed cells through forced expression conferred vorinostat resistance, indicating that specific and selective engagement of the intrinsic apoptotic pathway underlies the tumor-cell-selective apoptotic activities of these agents. The ability of HDACi to affect the growth and survival of tumor cells whilst leaving normal cells relatively unharmed is fundamental to their successful clinical application. This study provides new insight into the transcriptional effects of HDACi in human donor-matched normal and transformed cells, and implicates specific molecules and pathways in the tumor-selective cytotoxic activity of these compounds.


Genetics | 2011

Identification of Novel Ras-Cooperating Oncogenes in Drosophila melanogaster: A RhoGEF/Rho-Family/JNK Pathway Is a Central Driver of Tumorigenesis

Anthony M. Brumby; Karen R. Goulding; Tanja Schlosser; Sherene Loi; Ryan Galea; Peytee Khoo; Jessica E. Bolden; Toshiro Aigaki; Patrick O. Humbert; Helena E. Richardson

We have shown previously that mutations in the apico-basal cell polarity regulators cooperate with oncogenic Ras (RasACT) to promote tumorigenesis in Drosophila melanogaster and mammalian cells. To identify novel genes that cooperate with RasACT in tumorigenesis, we carried out a genome-wide screen for genes that when overexpressed throughout the developing Drosophila eye enhance RasACT-driven hyperplasia. RasACT-cooperating genes identified were Rac1 Rho1, RhoGEF2, pbl, rib, and east, which encode cell morphology regulators. In a clonal setting, which reveals genes conferring a competitive advantage over wild-type cells, only Rac1, an activated allele of Rho1 (Rho1ACT), RhoGEF2, and pbl cooperated with RasACT, resulting in reduced differentiation and large invasive tumors. Expression of RhoGEF2 or Rac1 with RasACT upregulated Jun kinase (JNK) activity, and JNK upregulation was essential for cooperation. However, in the whole-tissue system, upregulation of JNK alone was not sufficient for cooperation with RasACT, while in the clonal setting, JNK upregulation was sufficient for RasACT-mediated tumorigenesis. JNK upregulation was also sufficient to confer invasive growth of RasV12-expressing mammalian MCF10A breast epithelial cells. Consistent with this, HER2+ human breast cancers (where human epidermal growth factor 2 is overexpressed and Ras signaling upregulated) show a significant correlation with a signature representing JNK pathway activation. Moreover, our genetic analysis in Drosophila revealed that Rho1 and Rac are important for the cooperation of RhoGEF2 or Pbl overexpression and of mutants in polarity regulators, Dlg and aPKC, with RasACT in the whole-tissue context. Collectively our analysis reveals the importance of the RhoGEF/Rho-family/JNK pathway in cooperative tumorigenesis with RasACT.


Cell Reports | 2014

Inducible In Vivo Silencing of Brd4 Identifies Potential Toxicities of Sustained BET Protein Inhibition

Jessica E. Bolden; Nilgun Tasdemir; Lukas E. Dow; Johan H. van Es; John E. Wilkinson; Zhen Zhao; Hans Clevers; Scott W. Lowe

SUMMARY BET family proteins are novel therapeutic targets for cancer and inflammation and represent the first chromatin readers against which small-molecule inhibitors have been developed. First-generation BET inhibitors have shown therapeutic efficacy in preclinical models, but the consequences of sustained BET protein inhibition in normal tissues remain poorly characterized. Using an inducible and reversible transgenic RNAi mouse model, we show that strong suppression of the BET protein Brd4 in adult animals has dramatic effects in multiple tissues. Brd4-depleted mice display reversible epidermal hyperplasia, alopecia, and decreased cellular diversity and stem cell depletion in the small intestine. Furthermore, Brd4-suppressed intestines are sensitive to organ stress and show impaired regeneration following irradiation, suggesting that concurrent Brd4 suppression and certain cytotoxic therapies may induce undesirable synergistic effects. These findings provide important insight into Brd4 function in normal tissues and, importantly, predict several potential outcomes associated with potent and sustained BET protein inhibition.


Cancer Discovery | 2016

BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance

Nilgun Tasdemir; Ana Banito; Jae-Seok Roe; Direna Alonso-Curbelo; Matthew Camiolo; Darjus F. Tschaharganeh; Chun-Hao Huang; Ozlem Aksoy; Jessica E. Bolden; Chi-Chao Chen; Myles Fennell; Vishal Thapar; Agustin Chicas; Christopher R. Vakoc; Scott W. Lowe

UNLABELLED Oncogene-induced senescence is a potent barrier to tumorigenesis that limits cellular expansion following certain oncogenic events. Senescent cells display a repressive chromatin configuration thought to stably silence proliferation-promoting genes while simultaneously activating an unusual form of immune surveillance involving a secretory program referred to as the senescence-associated secretory phenotype (SASP). Here, we demonstrate that senescence also involves a global remodeling of the enhancer landscape with recruitment of the chromatin reader BRD4 to newly activated super-enhancers adjacent to key SASP genes. Transcriptional profiling and functional studies indicate that BRD4 is required for the SASP and downstream paracrine signaling. Consequently, BRD4 inhibition disrupts immune cell-mediated targeting and elimination of premalignant senescent cells in vitro and in vivo Our results identify a critical role for BRD4-bound super-enhancers in senescence immune surveillance and in the proper execution of a tumor-suppressive program. SIGNIFICANCE This study reveals how cells undergoing oncogene-induced senescence acquire a distinctive enhancer landscape that includes formation of super-enhancers adjacent to immune-modulatory genes required for paracrine immune activation. This process links BRD4 and super-enhancers to a tumor-suppressive immune surveillance program that can be disrupted by small molecule inhibitors of the bromo and extra terminal domain family of proteins. Cancer Discov; 6(6); 612-29. ©2016 AACR.See related commentary by Vizioli and Adams, p. 576This article is highlighted in the In This Issue feature, p. 561.

Collaboration


Dive into the Jessica E. Bolden's collaboration.

Top Co-Authors

Avatar

Ricky W. Johnstone

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Scott W. Lowe

University College London

View shared research outputs
Top Co-Authors

Avatar

Andrea Newbold

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Carolyn A. de Graaf

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kirsten Fairfax

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Leonie A. Cluse

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin C. Lucas

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Gordon K. Smyth

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Michael Bots

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge