Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica K. Lerch is active.

Publication


Featured researches published by Jessica K. Lerch.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract

Murray G. Blackmore; Zimei Wang; Jessica K. Lerch; Dario Motti; Yi Ping Zhang; Christopher B. Shields; Jae K. Lee; Jeffrey L. Goldberg; Vance Lemmon; John L. Bixby

Axon regeneration in the central nervous system normally fails, in part because of a developmental decline in the intrinsic ability of CNS projection neurons to extend axons. Members of the KLF family of transcription factors regulate regenerative potential in developing CNS neurons. Expression of one family member, KLF7, is down-regulated developmentally, and overexpression of KLF7 in cortical neurons in vitro promotes axonal growth. To circumvent difficulties in achieving high neuronal expression of exogenous KLF7, we created a chimera with the VP16 transactivation domain, which displayed enhanced neuronal expression compared with the native protein while maintaining transcriptional activation and growth promotion in vitro. Overexpression of VP16-KLF7 overcame the developmental loss of regenerative ability in cortical slice cultures. Adult corticospinal tract (CST) neurons failed to up-regulate KLF7 in response to axon injury, and overexpression of VP16-KLF7 in vivo promoted both sprouting and regenerative axon growth in the CST of adult mice. These findings identify a unique means of promoting CST axon regeneration in vivo by reengineering a developmentally down-regulated, growth-promoting transcription factor.


PLOS ONE | 2012

Isoform Diversity and Regulation in Peripheral and Central Neurons Revealed through RNA-Seq

Jessica K. Lerch; Frank Kuo; Dario Motti; Richard Morris; John L. Bixby; Vance Lemmon

To fully understand cell type identity and function in the nervous system there is a need to understand neuronal gene expression at the level of isoform diversity. Here we applied Next Generation Sequencing of the transcriptome (RNA-Seq) to purified sensory neurons and cerebellar granular neurons (CGNs) grown on an axonal growth permissive substrate. The goal of the analysis was to uncover neuronal type specific isoforms as a prelude to understanding patterns of gene expression underlying their intrinsic growth abilities. Global gene expression patterns were comparable to those found for other cell types, in that a vast majority of genes were expressed at low abundance. Nearly 18% of gene loci produced more than one transcript. More than 8000 isoforms were differentially expressed, either to different degrees in different neuronal types or uniquely expressed in one or the other. Sensory neurons expressed a larger number of genes and gene isoforms than did CGNs. To begin to understand the mechanisms responsible for the differential gene/isoform expression we identified transcription factor binding sites present specifically in the upstream genomic sequences of differentially expressed isoforms, and analyzed the 3′ untranslated regions (3′ UTRs) for microRNA (miRNA) target sites. Our analysis defines isoform diversity for two neuronal types with diverse axon growth capabilities and begins to elucidate the complex transcriptional landscape in two neuronal populations.


Molecular and Cellular Neuroscience | 2014

cJun promotes CNS axon growth

Jessica K. Lerch; Yania R. Martínez-Ondaro; John L. Bixby; Vance Lemmon

A number of genes regulate regeneration of peripheral axons, but their ability to drive axon growth and regeneration in the central nervous system (CNS) remains largely untested. To address this question we overexpressed eight transcription factors and one small GTPase alone and in pairwise combinations to test whether combinatorial overexpression would have a synergistic impact on CNS neuron neurite growth. The Jun oncogene/signal transducer and activator of transcription 6 (JUN/STAT6) combination increased neurite growth in dissociated cortical neurons and in injured cortical slices. In injured cortical slices, JUN overexpression increased axon growth to a similar extent as JUN and STAT6 together. Interestingly, JUN overexpression was not associated with increased growth associated protein 43 (GAP43) or integrin alpha 7 (ITGA7) expression, though these are predicted transcriptional targets. This study demonstrates that JUN overexpression in cortical neurons stimulates axon growth, but does so independently of changes in expression of genes thought to be critical for JUNs effects on axon growth. We conclude that JUN activity underlies this CNS axonal growth response, and that it is mechanistically distinct from peripheral regeneration responses, in which increases in JUN expression coincide with increases in GAP43 expression.


Seminars in Immunology | 2014

Glucocorticoids and macrophage migration inhibitory factor (MIF) are neuroendocrine modulators of inflammation and neuropathic pain after spinal cord injury.

Jessica K. Lerch; Denise A. Puga; Ona Bloom; Phillip G. Popovich

Traumatic spinal cord injury (SCI) activates the hypothalamic-pituitary-adrenal (HPA) axis, a potent neuroendocrine regulator of stress and inflammation. SCI also elicits a profound and sustained intraspinal and systemic inflammatory response. Together, stress hormones and inflammatory mediators will affect the growth and survival of neural and non-neural cells and ultimately neurologic recovery after SCI. Glucocorticoids (GCs) are endogenous anti-inflammatory steroids that are synthesized in response to stress or injury, in part to regulate inflammation. Exogenous synthetic GCs are often used for similar purposes in various diseases; however, their safety and efficacy in pre-clinical and clinical SCI is controversial. The relatively recent discovery that macrophage migration inhibitory factor (MIF) is produced throughout the body and can override the anti-inflammatory effects of GCs may provide unique insight to the importance of endogenous and exogenous GCs after SCI. Here, we review both GCs and MIF and discuss the potential relevance of their interactions after SCI, especially their role in regulating maladaptive mechanisms of plasticity and repair that may contribute to the onset and maintenance of neuropathic pain.


The Journal of Neuroscience | 2016

TLR4 Deficiency Impairs Oligodendrocyte Formation in the Injured Spinal Cord

Jamie S. Church; Kristina A. Kigerl; Jessica K. Lerch; Phillip G. Popovich; Dana M. McTigue

Acute oligodendrocyte (OL) death after traumatic spinal cord injury (SCI) is followed by robust neuron–glial antigen 2 (NG2)-positive OL progenitor proliferation and differentiation into new OLs. Inflammatory mediators are prevalent during both phases and can influence the fate of NG2 cells and OLs. Specifically, toll-like receptor (TLR) 4 signaling induces OL genesis in the naive spinal cord, and lack of TLR4 signaling impairs white matter sparing and functional recovery after SCI. Therefore, we hypothesized that TLR4 signaling may regulate oligodendrogenesis after SCI. C3H/HeJ (TLR4-deficient) and control (C3H/HeOuJ) mice received a moderate midthoracic spinal contusion. TLR4-deficient mice showed worse functional recovery and reduced OL numbers compared with controls at 24 h after injury through chronic time points. Acute OL loss was accompanied by reduced ferritin expression, which is regulated by TLR4 and needed for effective iron storage. TLR4-deficient injured spinal cords also displayed features consistent with reduced OL genesis, including reduced NG2 expression, fewer BrdU-positive OLs, altered BMP4 signaling and inhibitor of differentiation 4 (ID4) expression, and delayed myelin phagocytosis. Expression of several factors, including IGF-1, FGF2, IL-1β, and PDGF-A, was altered in TLR4-deficient injured spinal cords compared with wild types. Together, these data show that TLR4 signaling after SCI is important for OL lineage cell sparing and replacement, as well as in regulating cytokine and growth factor expression. These results highlight new roles for TLR4 in endogenous SCI repair and emphasize that altering the function of a single immune-related receptor can dramatically change the reparative responses of multiple cellular constituents in the injured CNS milieu. SIGNIFICANCE STATEMENT Myelinating cells of the CNS [oligodendrocytes (OLs)] are killed for several weeks after traumatic spinal cord injury (SCI), but they are replaced by resident progenitor cells. How the concurrent inflammatory signaling affects this endogenous reparative response is unclear. Here, we provide evidence that immune receptor toll-like receptor 4 (TLR4) supports OL lineage cell sparing, long-term OL and OL progenitor replacement, and chronic functional recovery. We show that TLR4 signaling is essential for acute iron storage, regulating cytokine and growth factor expression, and efficient myelin debris clearance, all of which influence OL replacement. Importantly, the current study reveals that a single immune receptor is essential for repair responses after SCI, and the potential mechanisms of this beneficial effect likely change over time after injury.


Glia | 2017

E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord

Jamie S. Church; Lindsay M. Milich; Jessica K. Lerch; Phillip G. Popovich; Dana M. McTigue

Oligodendrocyte progenitor cells (OPCs) are present throughout the adult brain and spinal cord and can replace oligodendrocytes lost to injury, aging, or disease. Their differentiation, however, is inhibited by myelin debris, making clearance of this debris an important step for cellular repair following demyelination. In models of peripheral nerve injury, TLR4 activation by lipopolysaccharide (LPS) promotes macrophage phagocytosis of debris. Here we tested whether the novel synthetic TLR4 agonist E6020, a Lipid A mimetic, promotes myelin debris clearance and remyelination in spinal cord white matter following lysolecithin‐induced demyelination. In vitro, E6020 induced TLR4‐dependent cytokine expression (TNFα, IL1β, IL‐6) and NF‐κB signaling, albeit at ∼10‐fold reduced potency compared to LPS. Microinjection of E6020 into the intact rat spinal cord gray/white matter border induced macrophage activation, OPC proliferation, and robust oligodendrogenesis, similar to what we described previously using an intraspinal LPS microinjection model. Finally, a single co‐injection of E6020 with lysolecithin into spinal cord white matter increased axon sparing, accelerated myelin debris clearance, enhanced Schwann cell infiltration into demyelinated lesions, and increased the number of remyelinated axons. In vitro assays confirmed that direct stimulation of macrophages by E6020 stimulates myelin phagocytosis. These data implicate TLR4 signaling in promoting repair after CNS demyelination, likely by stimulating phagocytic activity of macrophages, sparing axons, recruiting myelinating cells, and promoting remyelination. This work furthers our understanding of immune–myelin interactions and identifies a novel synthetic TLR4 agonist as a potential therapeutic avenue for white matter demyelinating conditions such as spinal cord injury and multiple sclerosis.


Molecular and Cellular Neuroscience | 2015

The tumor suppressor HHEX inhibits axon growth when prematurely expressed in developing central nervous system neurons

Matthew T. Simpson; Ishwariya Venkatesh; Ben L. Callif; Laura K. Thiel; Denise M. Coley; Kristen Winsor; Zimei Wang; Audra A. Kramer; Jessica K. Lerch; Murray G. Blackmore

Neurons in the embryonic and peripheral nervous system respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments are focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present only in trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension.


The Journal of Neuroscience | 2015

Transcriptomic Approaches to Neural Repair

Jennifer N. Dulin; Ana Antunes-Martins; Vijayendran Chandran; Michael Costigan; Jessica K. Lerch; Dianna E. Willis; Mark H. Tuszynski

Understanding why adult CNS neurons fail to regenerate their axons following injury remains a central challenge of neuroscience research. A more complete appreciation of the biological mechanisms shaping the injured nervous system is a crucial prerequisite for the development of robust therapies to promote neural repair. Historically, the identification of regeneration associated signaling pathways has been impeded by the limitations of available genetic and molecular tools. As we progress into an era in which the high-throughput interrogation of gene expression is commonplace and our knowledge base of interactome data is rapidly expanding, we can now begin to assemble a more comprehensive view of the complex biology governing axon regeneration. Here, we highlight current and ongoing work featuring transcriptomic approaches toward the discovery of novel molecular mechanisms that can be manipulated to promote neural repair. SIGNIFICANCE STATEMENT Transcriptional profiling is a powerful technique with broad applications in the field of neuroscience. Recent advances such as single-cell transcriptomics, CNS cell type-specific and developmental stage-specific expression libraries are rapidly enhancing the power of transcriptomics for neuroscience applications. However, extracting biologically meaningful information from large transcriptomic datasets remains a formidable challenge. This mini-symposium will highlight current work using transcriptomic approaches to identify regulatory networks in the injured nervous system. We will discuss analytical strategies for transcriptomics data, the significance of noncoding RNA networks, and the utility of multiomic data integration. Though the studies featured here specifically focus on neural repair, the approaches highlighted in this mini-symposium will be of broad interest and utility to neuroscientists working in diverse areas of the field.


eNeuro | 2017

Stress Increases Peripheral Axon Growth and Regeneration through Glucocorticoid Receptor-Dependent Transcriptional Programs

Jessica K. Lerch; Jessica K. Alexander; Kathryn M. Madalena; Dario Motti; Tam Quach; Akhil Dhamija; Alicia Zha; John C. Gensel; Jeanette Webster Marketon; Vance Lemmon; John L. Bixby; Phillip G. Popovich

Abstract Stress and glucocorticoid (GC) release are common behavioral and hormonal responses to injury or disease. In the brain, stress/GCs can alter neuron structure and function leading to cognitive impairment. Stress and GCs also exacerbate pain, but whether a corresponding change occurs in structural plasticity of sensory neurons is unknown. Here, we show that in female mice (Mus musculus) basal GC receptor (Nr3c1, also known as GR) expression in dorsal root ganglion (DRG) sensory neurons is 15-fold higher than in neurons in canonical stress-responsive brain regions (M. musculus). In response to stress or GCs, adult DRG neurite growth increases through mechanisms involving GR-dependent gene transcription. In vivo, prior exposure to an acute systemic stress increases peripheral nerve regeneration. These data have broad clinical implications and highlight the importance of stress and GCs as novel behavioral and circulating modifiers of neuronal plasticity.


FEBS Letters | 2017

Identification of miRNAs involved in DRG neurite outgrowth and their putative targets

Dario Motti; Jessica K. Lerch; Matt C. Danzi; Jared H. Gans; Frank Kuo; Tatiana I. Slepak; John L. Bixby; Vance Lemmon

Peripheral neurons regenerate their axons after injury. Transcriptional regulation by microRNAs (miRNAs) is one possible mechanism controlling regeneration. We profiled miRNA expression in mouse dorsal root ganglion neurons after a sciatic nerve crush, and identified 49 differentially expressed miRNAs. We evaluated the functional role of each miRNA using a phenotypic analysis approach. To predict the targets of the miRNAs we employed RNA‐Sequencing and examined transcription at the isoform level. We identify thousands of differentially expressed isoforms and bioinformatically associate the miRNAs that modulate neurite growth with their putative target isoforms to outline a network of regulatory events underlying peripheral nerve regeneration. MiR‐298, let‐7a, and let‐7f enhance neurite growth and target the majority of isoforms in the differentially expressed network.

Collaboration


Dive into the Jessica K. Lerch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge