Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica R. McCann is active.

Publication


Featured researches published by Jessica R. McCann.


PLOS ONE | 2010

Granuloma Formation and Host Defense in Chronic Mycobacterium tuberculosis Infection Requires PYCARD/ASC but Not NLRP3 or Caspase-1

Erin McElvania TeKippe; Irving C. Allen; Paul Hulseberg; Jonathan Tabb Sullivan; Jessica R. McCann; Matyas Sandor; Miriam Braunstein; Jenny P.-Y. Ting

The NLR gene family mediates host immunity to various acute pathogenic stimuli, but its role in chronic infection is not known. This paper addressed the role of NLRP3 (NALP3), its adaptor protein PYCARD (ASC), and caspase-1 during infection with Mycobacterium tuberculosis (Mtb). Mtb infection of macrophages in culture induced IL-1β secretion, and this requires the inflammasome components PYCARD, caspase-1, and NLRP3. However, in vivo Mtb aerosol infection of Nlrp3−/−, Casp-1−/−, and WT mice showed no differences in pulmonary IL-1β production, bacterial burden, or long-term survival. In contrast, a significant role was observed for Pycard in host protection during chronic Mtb infection, as shown by an abrupt decrease in survival of Pycard−/− mice. Decreased survival of Pycard−/− animals was associated with defective granuloma formation. These data demonstrate that PYCARD exerts a novel inflammasome-independent role during chronic Mtb infection by containing the bacteria in granulomas.


Applied and Environmental Microbiology | 2003

Population Dynamics of Vibrio fischeri during Infection of Euprymna scolopes

Jessica R. McCann; Eric V. Stabb; Deborah S. Millikan; Edward G. Ruby

ABSTRACT The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.


Infection and Immunity | 2012

The Mycobacterium tuberculosis SecA2 system subverts phagosome maturation to promote growth in macrophages

Jonathan Tabb Sullivan; Ellen F. Young; Jessica R. McCann; Miriam Braunstein

ABSTRACT The ability of Mycobacterium tuberculosis to grow in macrophages is critical to the virulence of this important pathogen. One way M. tuberculosis is thought to maintain a hospitable niche in macrophages is by arresting the normal process of phagosomes maturing into acidified phagolysosomes. The process of phagosome maturation arrest by M. tuberculosis is not fully understood, and there has remained a need to firmly establish a requirement for phagosome maturation arrest for M. tuberculosis growth in macrophages. Other intracellular pathogens that control the phagosomal environment use specialized protein export systems to deliver effectors of phagosome trafficking to the host cell. In M. tuberculosis, the accessory SecA2 system is a specialized protein export system that is required for intracellular growth in macrophages. In studying the importance of the SecA2 system in macrophages, we discovered that SecA2 is required for phagosome maturation arrest. Shortly after infection, phagosomes containing a ΔsecA2 mutant of M. tuberculosis were more acidified and showed greater association with markers of late endosomes than phagosomes containing wild-type M. tuberculosis. We further showed that inhibitors of phagosome acidification rescued the intracellular growth defect of the ΔsecA2 mutant, which demonstrated that the phagosome maturation arrest defect of the ΔsecA2 mutant is responsible for the intracellular growth defect. This study demonstrates the importance of phagosome maturation arrest for M. tuberculosis growth in macrophages, and it suggests there are effectors of phagosome maturation that are exported into the host environment by the accessory SecA2 system.


Journal of Bacteriology | 2008

ATPase Activity of Mycobacterium tuberculosis SecA1 and SecA2 Proteins and Its Importance for SecA2 Function in Macrophages

Jie M. Hou; Nadia G. D'Lima; Nathan W. Rigel; Henry S. Gibbons; Jessica R. McCann; Miriam Braunstein; Carolyn M. Teschke

The Sec-dependent translocation pathway that involves the essential SecA protein and the membrane-bound SecYEG translocon is used to export many proteins across the cytoplasmic membrane. Recently, several pathogenic bacteria, including Mycobacterium tuberculosis, were shown to possess two SecA homologs, SecA1 and SecA2. SecA1 is essential for general protein export. SecA2 is specific for a subset of exported proteins and is important for M. tuberculosis virulence. The enzymatic activities of two SecA proteins from the same microorganism have not been defined for any bacteria. Here, M. tuberculosis SecA1 and SecA2 are shown to bind ATP with high affinity, though the affinity of SecA1 for ATP is weaker than that of SecA2 or Escherichia coli SecA. Amino acid substitution of arginine or alanine for the conserved lysine in the Walker A motif of SecA2 eliminated ATP binding. We used the SecA2(K115R) variant to show that ATP binding was necessary for the SecA2 function of promoting intracellular growth of M. tuberculosis in macrophages. These results are the first to show the importance of ATPase activity in the function of accessory SecA2 proteins.


Journal of Biological Chemistry | 2009

The Accessory SecA2 System of Mycobacteria Requires ATP Binding and the Canonical SecA1

Nathan W. Rigel; Henry S. Gibbons; Jessica R. McCann; Justin A. McDonough; Sherry Kurtz; Miriam Braunstein

In bacteria, the majority of exported proteins are transported by the general Sec pathway from their site of synthesis in the cytoplasm across the cytoplasmic membrane. The essential SecA ATPase powers this Sec-mediated export. Mycobacteria possess two nonredundant SecA homologs: SecA1 and SecA2. In pathogenic Mycobacterium tuberculosis and the nonpathogenic model mycobacterium Mycobacterium smegmatis, SecA1 is essential for protein export and is the “housekeeping” SecA, whereas SecA2 is an accessory SecA that exports a specific subset of proteins. In M. tuberculosis the accessory SecA2 pathway plays a role in virulence. In this study, we uncovered basic properties of the mycobacterial SecA2 protein and its pathway for exporting select proteins. By constructing secA2 mutant alleles that encode proteins defective in ATP binding, we showed that ATP binding is required for SecA2 function. SecA2 mutant proteins unable to bind ATP were nonfunctional and dominant negative. By evaluating the subcellular distribution of each SecA, SecA1 was shown to be equally divided between cytosolic and cell envelope fractions, whereas SecA2 was predominantly localized to the cytosol. Finally, we showed that the canonical SecA1 has a role in the process of SecA2-dependent export. The accessory SecA2 export system is important to the physiology and virulence of mycobacteria. These studies help establish the mechanism of this new type of specialized protein export pathway.


Journal of Bacteriology | 2011

Genome-Wide Identification of Mycobacterium tuberculosis Exported Proteins with Roles in Intracellular Growth

Jessica R. McCann; Justin A. McDonough; Jonathan Tabb Sullivan; Meghan E. Feltcher; Miriam Braunstein

The exported proteins of Mycobacterium tuberculosis that are localized at the bacterial cell surface or secreted into the environment are ideally situated to interact with host factors and to function in virulence. In this study, we constructed a novel β-lactamase reporter transposon and used it directly in M. tuberculosis for genome-wide identification of exported proteins. From 177 β-lactam-resistant transposon mutants, we identified 111 different exported proteins. The majority of these proteins have no known function, and for nearly half of the proteins, our demonstration that they are exported when fused to a β-lactamase reporter is the first experimental proof of their extracytoplasmic localization. The transposon mutants in our banked library were of further value as a collection of mutants lacking individual exported proteins. By individually testing each of 111 mutants for growth in macrophages, six attenuated mutants with insertions in mce1A, mce1B, mce2F, rv0199, ctaC, and lppX were identified. Given that much of the M. tuberculosis genome encodes proteins of unknown function, our library of mapped transposon mutants is a valuable resource for efforts in functional genomics. This work also demonstrates the power of a β-lactamase reporter transposon that could be applied similarly to other bacterial pathogens.


PLOS Pathogens | 2014

The HMW1C-Like Glycosyltransferases—An Enzyme Family with a Sweet Tooth for Simple Sugars

Jessica R. McCann; Joseph W. St. Geme

The HMW1 and HMW2 adhesins of nontypeable Haemophilus influenzae are high-molecular weight proteins that are secreted by the two-partner secretion (TPS) pathway, also known as the Type Vb secretion pathway [1,2]. TPS systems typically consist of a large extracellular protein called a TpsA protein (encoded by a tpsA gene) and a cognate outer membrane pore-forming translocator protein called a TpsB protein (encoded by a tpsB gene). HMW1 and HMW2 are TpsA proteins and are encoded by hmw1A and hmw2A, respectively, and HMW1B and HMW2B are the cognate TpsB proteins and are encoded by hmw1B and hmw2B, respectively [3,4]. The hmw1A-hmw1B and hmw2A-hmw2B gene clusters have a similar configuration and are located in physically separate regions of the H. influenzae chromosome. A distinctive feature of the HMW1 and HMW2 systems is the presence of a third protein, called HMW1C in the HMW1 system and HMW2C in the HMW2 system. HMW1C and HMW2C are highly homologous glycosyltransferases [5,6] that are responsible for adding sugar moieties to HMW1 and HMW2 and are encoded by the hmw1C and hmw2C genes, located downstream of hmw1B and hmw2B, respectively. Since the HMW1 and HMW2 systems have similar properties [7], in this review we will confine our discussion to the HMW1 system. The HMW1 adhesin is presented on the bacterial surface via a multistep process that requires HMW1C-mediated glycosylation (reviewed in [8]). As shown schematically in Figure 1, HMW1 is synthesized and glycosylated in the cytoplasm and is directed to the Sec translocase in the inner membrane via an extended Nterminal signal sequence [9]. The signal sequence is cleaved by signal peptidase I, and nascent HMW1 is then directed to its cognate HMW1B b-barrel pore in the outer membrane [9]. The initial interaction between HMW1 and HMW1B occurs via the N-terminal TPS secretion domain in the HMW1 pro-piece and the periplasmic domain in HMW1B [10]. The HMW1 pro-piece spans amino acids 69– 441 and is cleaved during or following secretion through the HMW1B pore [9]. HMW1 is ultimately tethered to the bacterial surface via a noncovalent interaction that requires the C-terminal 20 amino acids of the protein and is dependent upon disulfide bond formation between two conserved cysteine residues in this region (cysteines 1518 and 1528). Immunolabeling studies have demonstrated that the immediate C terminus of HMW1 is inaccessible to surface labeling, suggesting that it remains in the periplasm or is buried in the HMW1B pore [5,11]. Elimination of HMW1C results in degradation of HMW1 in bacterial lysates, indicating that glycosylation is required for HMW1 stability. Any remaining nonglycosylated HMW1 is released into the culture supernatant, indicating that glycosylation is also required for HMW1 tethering to the bacterial surface [5]. Manual analysis of mass spectra of HMW1 was required to recognize that glycan structures are present at asparagine residues in conserved NXS/T motifs, reflecting the fact that the modifying carbohydrates are mono-hexose or dihexose groups rather than complex polysaccharides [12,13]. There are at least 31 residues that are modified with glucose, galactose, glucose-glucose, or glucose-galactose residues in the mature surfacelocalized HMW1 protein [12,13]. Based on biochemical analysis and examination of the crystal structure of the HMW1 propiece, the pro-piece is nonglycosylated, perhaps because glycosylation would interfere with cleavage of this fragment, which occurs by an undefined mechanism (Figure 1) [9,12,14].


Microbiology | 2014

Structural determinants of the interaction between the Haemophilus influenzae Hap autotransporter and fibronectin.

Nicole A. Spahich; Roma Kenjale; Jessica R. McCann; Guoyu Meng; Tomoo Ohashi; Harold P. Erickson; Joseph W. St. Geme

Haemophilus influenzae is a Gram-negative cocco-bacillus that initiates infection by colonizing the upper respiratory tract. Hap is an H. influenzae serine protease autotransporter protein that mediates adherence, invasion and microcolony formation in assays with human epithelial cells and is presumed to facilitate the process of colonization. Additionally, Hap mediates adherence to fibronectin, laminin and collagen IV, extracellular matrix (ECM) proteins that are present in the respiratory tract and are probably important targets for H. influenzae colonization. The region of Hap responsible for adherence to ECM proteins has been localized to the C-terminal 511 aa of the Hap passenger domain (HapS). In this study, we characterized the structural determinants of the interaction between HapS and fibronectin. Using defined fibronectin fragments, we established that Hap interacts with the fibronectin repeat fragment called FNIII(1-2). Using site-directed mutagenesis, we found a series of motifs in the C-terminal region of HapS that contribute to the interaction with fibronectin. Most of these motifs are located on the F1 and F3 faces of the HapS structure, suggesting that the F1 and F3 faces may be responsible for the HapS-fibronectin interaction.


Molecular Microbiology | 2016

An orphaned Mce‐associated membrane protein of Mycobacterium tuberculosis is a virulence factor that stabilizes Mce transporters

Ellen F. Perkowski; Brittany K. Miller; Jessica R. McCann; Jonathan Tabb Sullivan; Seidu Malik; Irving C. Allen; Virginia Godfrey; Jennifer D. Hayden; Miriam Braunstein

Mycobacterium tuberculosis proteins that are exported out of the bacterial cytoplasm are ideally positioned to be virulence factors; however, the functions of individual exported proteins remain largely unknown. Previous studies identified Rv0199 as an exported membrane protein of unknown function. Here, we characterized the role of Rv0199 in M. tuberculosis virulence using an aerosol model of murine infection. Rv0199 appears to be a member of a Mce‐associated membrane (Mam) protein family leading us to rename it OmamA, for orphaned Mam protein A. Consistent with a role in Mce transport, we showed OmamA is required for cholesterol import, which is a Mce4‐dependent process. We further demonstrated a function for OmamA in stabilizing protein components of the Mce1 transporter complex. These results indicate a function of OmamA in multiple Mce transporters and one that may be analogous to the role of VirB8 in stabilizing Type IV secretion systems, as structural similarities between Mam proteins and VirB8 proteins are predicted by the Phyre 2 program. In this study, we provide functional information about OmamA and shed light on the function of Mam family proteins in Mce transporters.


Infection and Immunity | 2016

Early-Life Intranasal Colonization with Nontypeable Haemophilus influenzae Exacerbates Juvenile Airway Disease in Mice

Jessica R. McCann; Stanley N. Mason; Richard L. Auten; Joseph W. St. Geme; Patrick C. Seed

ABSTRACT Accumulating evidence suggests a connection between asthma development and colonization with nontypeable Haemophilus influenzae (NTHi). Specifically, nasopharyngeal colonization of human infants with NTHi within 4 weeks of birth is associated with an increased risk of asthma development later in childhood. Monocytes derived from these infants have aberrant inflammatory responses to common upper respiratory bacterial antigens compared to those of cells derived from infants who were not colonized and do not go on to develop asthma symptoms in childhood. In this study, we hypothesized that early-life colonization with NTHi promotes immune system reprogramming and the development of atypical inflammatory responses. To address this hypothesis in a highly controlled model, we tested whether colonization of mice with NTHi on day of life 3 induced or exacerbated juvenile airway disease using an ovalbumin (OVA) allergy model of asthma. We found that animals that were colonized on day of life 3 and subjected to induction of allergy had exacerbated airway disease as juveniles, in which exacerbated airway disease was defined as increased cellular infiltration into the lung, increased amounts of inflammatory cytokines interleukin-5 (IL-5) and IL-13 in lung lavage fluid, decreased regulatory T cell-associated FOXP3 gene expression, and increased mucus production. We also found that colonization with NTHi amplified airway resistance in response to increasing doses of a bronchoconstrictor following OVA immunization and challenge. Together, the murine model provides evidence for early-life immune programming that precedes the development of juvenile airway disease and corroborates observations that have been made in human children.

Collaboration


Dive into the Jessica R. McCann's collaboration.

Top Co-Authors

Avatar

Miriam Braunstein

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jonathan Tabb Sullivan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Joseph W. St. Geme

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan W. Rigel

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Henry S. Gibbons

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward G. Ruby

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ellen F. Young

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge