Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yigong Shi is active.

Publication


Featured researches published by Yigong Shi.


Nature Reviews Molecular Cell Biology | 2004

Molecular mechanisms of caspase regulation during apoptosis

Stefan J. Riedl; Yigong Shi

Caspases, which are the executioners of apoptosis, comprise two distinct classes, the initiators and the effectors. Although general structural features are shared between the initiator and the effector caspases, their activation, inhibition and release of inhibition are differentially regulated. Biochemical and structural studies have led to important advances in understanding the underlying molecular mechanisms of caspase regulation. This article reviews these latest advances and describes our present understanding of caspase regulation during apoptosis.


Molecular Cell | 2002

Mechanisms of Caspase Activation and Inhibition during Apoptosis.

Yigong Shi

Caspases are central components of the machinery responsible for apoptosis. Recent structural and biochemical studies on procaspases, IAPs, Smac/DIABLO, and apoptosome have revealed a conserved mechanism of caspase activation and inhibition. This article reviews these latest advances and presents our current understanding of caspase regulation during apoptosis.


Nature | 2001

A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis.

Srinivasa M. Srinivasula; Ramesh Hegde; Ayman Saleh; Pinaki Datta; Eric N. Shiozaki; Jijie Chai; Ryung-Ah Lee; Paul D. Robbins; Teresa Fernandes-Alnemri; Yigong Shi; Emad S. Alnemri

X-linked inhibitor-of-apoptosis protein (XIAP) interacts with caspase-9 and inhibits its activity, whereas Smac (also known as DIABLO) relieves this inhibition through interaction with XIAP. Here we show that XIAP associates with the active caspase-9–Apaf-1 holoenzyme complex through binding to the amino terminus of the linker peptide on the small subunit of caspase-9, which becomes exposed after proteolytic processing of procaspase-9 at Asp 315. Supporting this observation, point mutations that abrogate the proteolytic processing but not the catalytic activity of caspase-9, or deletion of the linker peptide, prevented caspase-9 association with XIAP and its concomitant inhibition. We note that the N-terminal four residues of caspase-9 linker peptide share significant homology with the N-terminal tetra-peptide in mature Smac and in the Drosophila proteins Hid/Grim/Reaper, defining a conserved class of IAP-binding motifs. Consistent with this finding, binding of the caspase-9 linker peptide and Smac to the BIR3 domain of XIAP is mutually exclusive, suggesting that Smac potentiates caspase-9 activity by disrupting the interaction of the linker peptide of caspase-9 with BIR3. Our studies reveal a mechanism in which binding to the BIR3 domain by two conserved peptides, one from Smac and the other one from caspase-9, has opposing effects on caspase activity and apoptosis.


Cell | 1999

Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association.

Jie Oh Lee; Haijuan Yang; Maria-Magdalena Georgescu; Antonio Di Cristofano; Tomohiko Maehama; Yigong Shi; Jack E. Dixon; Pier Pandolfi; Nikola P. Pavletich

The PTEN tumor suppressor is mutated in diverse human cancers and in hereditary cancer predisposition syndromes. PTEN is a phosphatase that can act on both polypeptide and phosphoinositide substrates in vitro. The PTEN structure reveals a phosphatase domain that is similar to protein phosphatases but has an enlarged active site important for the accommodation of the phosphoinositide substrate. The structure also reveals that PTEN has a C2 domain. The PTEN C2 domain binds phospholipid membranes in vitro, and mutation of basic residues that could mediate this reduces PTENs membrane affinity and its ability to suppress the growth of glioblastoma tumor cells. The phosphatase and C2 domains associate across an extensive interface, suggesting that the C2 domain may serve to productively position the catalytic domain on the membrane.


Cell | 2009

Serine/Threonine Phosphatases: Mechanism through Structure

Yigong Shi

The reversible phosphorylation of proteins is accomplished by opposing activities of kinases and phosphatases. Relatively few protein serine/threonine phosphatases (PSPs) control the specific dephosphorylation of thousands of phosphoprotein substrates. Many PSPs, exemplified by protein phosphatase 1 (PP1) and PP2A, achieve substrate specificity and regulation through combinatorial interactions between conserved catalytic subunits and a large number of regulatory subunits. Other PSPs, represented by PP2C and FCP/SCP, contain both catalytic and regulatory domains within the same polypeptide chain. Here, we discuss biochemical and structural investigations that advance the mechanistic understanding of the three major classes of PSPs, with a focus on PP2A.


Nature | 2000

Structural and biochemical basis of apoptotic activation by Smac/DIABLO.

Jijie Chai; Chunying Du; Jia-Wei Wu; Saw Kyin; Xiaodong Wang; Yigong Shi

Apoptosis (programmed cell death), an essential process in the development and homeostasis of metazoans, is carried out by caspases. The mitochondrial protein Smac/DIABLO performs a critical function in apoptosis by eliminating the inhibitory effect of IAPs (inhibitor of apoptosis proteins) on caspases. Here we show that Smac/DIABLO promotes not only the proteolytic activation of procaspase-3 but also the enzymatic activity of mature caspase-3, both of which depend upon its ability to interact physically with IAPs. The crystal structure of Smac/DIABLO at 2.2 Å resolution reveals that it homodimerizes through an extensive hydrophobic interface. Missense mutations inactivating this dimeric interface significantly compromise the function of Smac/DIABLO. As in the Drosophila proteins Reaper, Grim and Hid, the amino-terminal amino acids of Smac/DIABLO are indispensable for its function, and a seven-residue peptide derived from the amino terminus promotes procaspase-3 activation in vitro. These results establish an evolutionarily conserved structural and biochemical basis for the activation of apoptosis by Smac/DIABLO.


Nature | 2000

Structural basis of IAP recognition by Smac/DIABLO.

Geng Wu; Jijie Chai; Tomeka L. Suber; Jia-Wei Wu; Chunying Du; Xiaodong Wang; Yigong Shi

Apoptosis is an essential process in the development and homeostasis of all metazoans. The inhibitor-of-apoptosis (IAP) proteins suppress cell death by inhibiting the activity of caspases; this inhibition is performed by the zinc-binding BIR domains of the IAP proteins. The mitochondrial protein Smac/DIABLO promotes apoptosis by eliminating the inhibitory effect of IAPs through physical interactions. Amino-terminal sequences in Smac/DIABLO are required for this function, as mutation of the very first amino acid leads to loss of interaction with IAPs and concomitant loss of Smac/DIABLO function. Here we report the high-resolution crystal structure of Smac/DIABLO complexed with the third BIR domain (BIR3) of XIAP. Our results show that the N-terminal four residues (Ala-Val-Pro-Ile) in Smac/DIABLO recognize a surface groove on BIR3, with the first residue Ala binding a hydrophobic pocket and making five hydrogen bonds to neighbouring residues on BIR3. These observations provide a structural explanation for the roles of the Smac N terminus as well as the conserved N-terminal sequences in the Drosophila proteins Hid/Grim/Reaper. In conjunction with other observations, our results reveal how Smac may relieve IAP inhibition of caspase-9 activity. In addition to explaining a number of biological observations, our structural analysis identifies potential targets for drug screening.


Cell | 1998

Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling.

Yigong Shi; Yan-Fei Wang; Lata Jayaraman; Haijuan Yang; Joan Massagué; Nikola P. Pavletich

The Smad family of proteins, which are frequently targeted by tumorigenic mutations in cancer, mediate TGF-beta signaling from cell membrane to nucleus. The crystal structure of a Smad3 MH1 domain bound to an optimal DNA sequence determined at 2.8 A resolution reveals a novel DNA-binding motif. In the crystals, base-specific DNA recognition is provided exclusively by a conserved 11-residue beta hairpin that is embedded in the major groove of DNA. A surface loop region, to which tumorigenic mutations map, has been identified as a functional surface important for Smad activity. This structure establishes a framework for understanding how Smad proteins may act in concert with other transcription factors in the regulation of TGF-beta-responsive genes.


Molecular Cell | 2003

Mechanism of XIAP-Mediated Inhibition of Caspase-9.

Eric N. Shiozaki; Jijie Chai; Daniel J. Rigotti; Stefan J. Riedl; Pingwei Li; Srinivasa M. Srinivasula; Emad S. Alnemri; Robert Fairman; Yigong Shi

The inhibitor of apoptosis (IAP) proteins potently inhibit the catalytic activity of caspases. While profound insight into the inhibition of the effector caspases has been gained in recent years, the mechanism of how the initiator caspase-9 is regulated by IAPs remains enigmatic. This paper reports the crystal structure of caspase-9 in an inhibitory complex with the third baculoviral IAP repeat (BIR3) of XIAP at 2.4 A resolution. The structure reveals that the BIR3 domain forms a heterodimer with a caspase-9 monomer. Strikingly, the surface of caspase-9 that interacts with BIR3 also mediates its homodimerization. We demonstrate that monomeric caspase-9 is catalytically inactive due to the absence of a supporting sequence element that could be provided by homodimerization. Thus, XIAP sequesters caspase-9 in a monomeric state, which serves to prevent catalytic activity. These studies, in conjunction with other observations, define a unified mechanism for the activation of all caspases.


Cell | 2001

Structural Basis of Caspase-7 Inhibition by XIAP

Jijie Chai; Eric N. Shiozaki; Srinivasa M. Srinivasula; Qi Wu; Pinaki Dataa; Emad S. Alnemri; Yigong Shi

The inhibitor of apoptosis (IAP) proteins suppress cell death by inhibiting the catalytic activity of caspases. Here we present the crystal structure of caspase-7 in complex with a potent inhibitory fragment from XIAP at 2.45 A resolution. An 18-residue XIAP peptide binds the catalytic groove of caspase-7, making extensive contacts to the residues that are essential for its catalytic activity. Strikingly, despite a reversal of relative orientation, a subset of interactions between caspase-7 and XIAP closely resemble those between caspase-7 and its tetrapeptide inhibitor DEVD-CHO. Our biochemical and structural analyses reveal that the BIR domains are dispensable for the inhibition of caspase-3 and -7. This study provides a structural basis for the design of the next-generation caspase inhibitors.

Collaboration


Dive into the Yigong Shi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge