Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jian-Piao Cai is active.

Publication


Featured researches published by Jian-Piao Cai.


The Journal of Infectious Diseases | 2013

Differential Cell Line Susceptibility to the Emerging Novel Human Betacoronavirus 2c EMC/2012: Implications for Disease Pathogenesis and Clinical Manifestation

Jasper Fuk-Woo Chan; Kwok-Hung Chan; Garnet K. Y. Choi; Kelvin K. W. To; Herman Tse; Jian-Piao Cai; Man Lung Yeung; Vincent C. C. Cheng; Honglin Chen; Xiaoyan Che; Susanna Kar-Pui Lau; Patrick Chiu-Yat Woo; Kwok-Yung Yuen

Abstract The emerging novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) was recently isolated from patients with severe pneumonia and renal failure and was associated with an unexplained high crude fatality rate of 56%. We performed a cell line susceptibility study with 28 cell lines. HCoV-EMC was found to infect the human respiratory tract (polarized airway epithelium cell line Calu-3, embryonic fibroblast cell line HFL, and lung adenocarcinoma cell line A549), kidney (embryonic kidney cell line HEK), intestinal tract (colorectal adenocarcinoma cell line Caco-2), liver cells (hepatocellular carcinoma cell line Huh-7), and histiocytes (malignant histiocytoma cell line His-1), as evident by detection of high or increasing viral load in culture supernatants, detection of viral nucleoprotein expression by immunostaining, and/or detection of cytopathic effects. Although an infected human neuronal cell line (NT2) and infected monocyte and T lymphocyte cell lines (THP-1, U937, and H9) had increased viral loads, their relatively lower viral production corroborated with absent nucleoprotein expression and cytopathic effects. This range of human tissue tropism is broader than that for all other HCoVs, including SARS coronavirus, HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63, which may explain the high mortality associated with this disease. A recent cell line susceptibility study showed that HCoV-EMC can infect primate, porcine, and bat cells and therefore may jump interspecies barriers. We found that HCoV-EMC can also infect civet lung fibroblast and rabbit kidney cell lines. These findings have important implications for the diagnosis, pathogenesis, and transmission of HCoV-EMC.


Journal of Infection | 2013

Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests.

Kwok-Hung Chan; Jasper Fuk-Woo Chan; Herman Tse; Honglin Chen; Candy Choi-Yi Lau; Jian-Piao Cai; Alan Ka-Lun Tsang; Xincai Xiao; Kelvin K. W. To; Susanna Kar-Pui Lau; Patrick Chiu-Yat Woo; Bo-Jiang Zheng; Ming Wang; Kwok-Yung Yuen

Summary Objectives A severe acute respiratory syndrome (SARS)-like disease due to a novel betacoronavirus, human coronavirus EMC (HCoV-EMC), has emerged recently. HCoV-EMC is phylogenetically closely related to Tylonycteris-bat-coronavirus-HKU4 and Pipistrellus-bat-coronavirus-HKU5 in Hong Kong. We conducted a seroprevalence study on archived sera from 94 game-food animal handlers at a wild life market, 28 SARS patients, and 152 healthy blood donors in Southern China to assess the zoonotic potential and evidence for intrusion of HCoV-EMC and related viruses into humans. Methods Anti-HCoV-EMC and anti-SARS-CoV antibodies were detected using screening indirect immunofluorescence (IF) and confirmatory neutralizing antibody tests. Results Two (2.1%) animal handlers had IF antibody titer of ≥1:20 against both HCoV-EMC and SARS-CoV with neutralizing antibody titer of <1:10. No blood donor had antibody against either virus. Surprisingly, 17/28 (60.7%) of SARS patients had significant IF antibody titers with 7/28 (25%) having anti-HCoV-EMC neutralizing antibodies at low titers which significantly correlated with that of HCoV-OC43. Bioinformatics analysis demonstrated a significant B-cell epitope overlapping the heptad repeat-2 region of Spike protein. Virulence of SARS-CoV over other betacoronaviruses may boost cross-reactive neutralizing antibodies against other betacoronaviruses. Conclusions Convalescent SARS sera may contain cross-reactive antibodies against other betacoronaviruses and confound seroprevalence study for HCoV-EMC.


The Journal of Infectious Diseases | 2015

Treatment With Lopinavir/Ritonavir or Interferon-β1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset

Jasper Fuk-Woo Chan; Yanfeng Yao; Man Lung Yeung; Wei Deng; Linlin Bao; Lilong Jia; Fengdi Li; Chong Xiao; Hong Gao; Pin Yu; Jian-Piao Cai; Hin Chu; Jie Zhou; Honglin Chen; Chuan Qin; Kwok-Yung Yuen

Abstract Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe disease in human with an overall case-fatality rate of >35%. Effective antivirals are crucial for improving the clinical outcome of MERS. Although a number of repurposed drugs, convalescent-phase plasma, antiviral peptides, and neutralizing antibodies exhibit anti-MERS-CoV activity in vitro, most are not readily available or have not been evaluated in nonhuman primates. We assessed 3 repurposed drugs with potent in vitro anti-MERS-CoV activity (mycophenolate mofetil [MMF], lopinavir/ritonavir, and interferon-β1b) in common marmosets with severe disease resembling MERS in humans. The lopinavir/ritonavir-treated and interferon-β1b-treated animals had better outcome than the untreated animals, with improved clinical (mean clinical scores ↓50.9%–95.0% and ↓weight loss than the untreated animals), radiological (minimal pulmonary infiltrates), and pathological (mild bronchointerstitial pneumonia) findings, and lower mean viral loads in necropsied lung (↓0.59–1.06 log10 copies/glyceraldehyde 3-phosphate dehydrogenase [GAPDH]; P < .050) and extrapulmonary (↓0.11–1.29 log10 copies/GAPDH; P < .050 in kidney) tissues. In contrast, all MMF-treated animals developed severe and/or fatal disease with higher mean viral loads (↑0.15–0.54 log10 copies/GAPDH) than the untreated animals. The mortality rate at 36 hours postinoculation was 67% (untreated and MMF-treated) versus 0–33% (lopinavir/ritonavir-treated and interferon-β1b-treated). Lopinavir/ritonavir and interferon-β1b alone or in combination should be evaluated in clinical trials. MMF alone may worsen MERS and should not be used.


Emerging microbes & infections | 2016

Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non-vector-borne human transmission and animal reservoirs

Jasper Fuk-Woo Chan; Cyril Chik-Yan Yip; Jessica Oi-Ling Tsang; Kah-Meng Tee; Jian-Piao Cai; Kenn Ka-Heng Chik; Zheng Zhu; Chris Chung-Sing Chan; Garnet K. Y. Choi; Siddharth Sridhar; Anna Jinxia Zhang; Gang Lu; Kin Chiu; Amy C. Y. Lo; Sai Wah Tsao; Kin-Hang Kok; Dong-Yan Jin; Kwok-Hung Chan; Kwok-Yung Yuen

Zika virus (ZIKV) is unique among human-pathogenic flaviviruses by its association with congenital anomalies and trans-placental and sexual human-to-human transmission. Although the pathogenesis of ZIKV-associated neurological complications has been reported in recent studies, key questions on the pathogenesis of the other clinical manifestations, non-vector-borne transmission and potential animal reservoirs of ZIKV remain unanswered. We systematically characterized the differential cell line susceptibility of 18 human and 15 nonhuman cell lines to two ZIKV isolates (human and primate) and dengue virus type 2 (DENV-2). Productive ZIKV replication (⩾2 log increase in viral load, ZIKV nonstructural protein-1 (NS1) protein expression and cytopathic effects (CPE)) was found in the placental (JEG-3), neuronal (SF268), muscle (RD), retinal (ARPE19), pulmonary (Hep-2 and HFL), colonic (Caco-2),and hepatic (Huh-7) cell lines. These findings helped to explain the trans-placental transmission and other clinical manifestations of ZIKV. Notably, the prostatic (LNCaP), testicular (833KE) and renal (HEK) cell lines showed increased ZIKV load and/or NS1 protein expression without inducing CPE, suggesting their potential roles in sexual transmission with persistent viral replication at these anatomical sites. Comparatively, none of the placental and genital tract cell lines allowed efficient DENV-2 replication. Among the nonhuman cell lines, nonhuman primate (Vero and LLC-MK2), pig (PK-15), rabbit (RK-13), hamster (BHK21) and chicken (DF-1) cell lines supported productive ZIKV replication. These animal species may be important reservoirs and/or potential animal models for ZIKV. The findings in our study help to explain the viral shedding pattern, transmission and pathogenesis of the rapidly disseminating ZIKV, and are useful for optimizing laboratory diagnostics and studies on the pathogenesis and counter-measures of ZIKV.


Emerging Infectious Diseases | 2014

Novel Betacoronavirus in Dromedaries of the Middle East, 2013

Patrick C. Y. Woo; Susanna K. P. Lau; Ulrich Wernery; Emily Y. M. Wong; Alan K. L. Tsang; Bobby Johnson; Cyril C. Y. Yip; Candy C. Y. Lau; Saritha Sivakumar; Jian-Piao Cai; Rachel Y. Y. Fan; Kwok-Hung Chan; Ringu Mareena; Kwok-Yung Yuen

In 2013, a novel betacoronavirus was identified in fecal samples from dromedaries in Dubai, United Arab Emirates. Antibodies against the recombinant nucleocapsid protein of the virus, which we named dromedary camel coronavirus (DcCoV) UAE-HKU23, were detected in 52% of 59 dromedary serum samples tested. In an analysis of 3 complete DcCoV UAE-HKU23 genomes, we identified the virus as a betacoronavirus in lineage A1. The DcCoV UAE-HKU23 genome has G+C contents; a general preference for G/C in the third position of codons; a cleavage site for spike protein; and a membrane protein of similar length to that of other betacoronavirus A1 members, to which DcCoV UAE-HKU23 is phylogenetically closely related. Along with this coronavirus, viruses of at least 8 other families have been found to infect camels. Because camels have a close association with humans, continuous surveillance should be conducted to understand the potential for virus emergence in camels and for virus transmission to humans.


EBioMedicine | 2016

Zika Virus Infection in Dexamethasone-immunosuppressed Mice Demonstrating Disseminated Infection with Multi-organ Involvement Including Orchitis Effectively Treated by Recombinant Type I Interferons.

Jasper Fuk-Woo Chan; Anna Jinxia Zhang; Chris Chung-Sing Chan; Cyril Chik-Yan Yip; Winger Wing-Nga Mak; Houshun Zhu; Vincent Kwok-Man Poon; Kah-Meng Tee; Zheng Zhu; Jian-Piao Cai; Jessica Oi-Ling Tsang; Kenn Ka-Heng Chik; Feifei Yin; Kwok-Hung Chan; Kin-Hang Kok; Dong-Yan Jin; Rex K.H. Au-Yeung; Kwok-Yung Yuen

Background Disseminated or fatal Zika virus (ZIKV) infections were reported in immunosuppressed patients. Existing interferon-signaling/receptor-deficient mouse models may not be suitable for evaluating treatment effects of recombinant interferons. Methods We developed a novel mouse model for ZIKV infection by immunosuppressing BALB/c mice with dexamethasone. Results Dexamethasone-immunosuppressed male mice (6–8 weeks) developed disseminated infection as evidenced by the detection of ZIKV-NS1 protein expression and high viral loads in multiple organs. They had ≥ 10% weight loss and high clinical scores soon after dexamethasone withdrawal (10 dpi), which warranted euthanasia at 12 dpi. Viral loads in blood and most tissues at 5 dpi were significantly higher than those at 12 dpi (P < 0.05). Histological examination revealed prominent inflammatory infiltrates in multiple organs, and CD45 + and CD8 + inflammatory cells were seen in the testis. These findings suggested that clinical deterioration occurred during viral clearance by host immune response. Type I interferon treatments improved clinical outcome of mice (100% vs 0% survival). Conclusions Besides virus dissemination, inflammation of various tissues, especially orchitis, may be potential complications of ZIKV infection with significant implications on disease transmission and male fertility. Interferon treatment should be considered in patients at high risks for ZIKV-associated complications when the potential benefits outweigh the side effects of treatment.


The Journal of Infectious Diseases | 2016

Middle East Respiratory Syndrome Coronavirus Efficiently Infects Human Primary T Lymphocytes and Activates the Extrinsic and Intrinsic Apoptosis Pathways.

Hin Chu; Jie Zhou; Bosco Ho-Yin Wong; Cun Li; Jasper Fuk-Woo Chan; Zhong-Shan Cheng; Dong Yang; Dong Wang; Andrew C. Y. Lee; Chuangen Li; Man Lung Yeung; Jian-Piao Cai; Ivy Hau-Yee Chan; Wai-Kuen Ho; Kelvin K. W. To; Bo-Jian Zheng; Yanfeng Yao; Chuan Qin; Kwok-Yung Yuen

Abstract Middle East respiratory syndrome (MERS) is associated with a mortality rate of >35%. We previously showed that MERS coronavirus (MERS-CoV) could infect human macrophages and dendritic cells and induce cytokine dysregulation. Here, we further investigated the interplay between human primary T cells and MERS-CoV in disease pathogenesis. Importantly, our results suggested that MERS-CoV efficiently infected T cells from the peripheral blood and from human lymphoid organs, including the spleen and the tonsil. We further demonstrated that MERS-CoV infection induced apoptosis in T cells, which involved the activation of both the extrinsic and intrinsic apoptosis pathways. Remarkably, immunostaining of spleen sections from MERS-CoV–infected common marmosets demonstrated the presence of viral nucleoprotein in their CD3+ T cells. Overall, our results suggested that the unusual capacity of MERS-CoV to infect T cells and induce apoptosis might partly contribute to the high pathogenicity of the virus.


Journal of Virology | 2015

Discovery of a Novel Coronavirus, China Rattus Coronavirus HKU24, from Norway Rats Supports the Murine Origin of Betacoronavirus 1 and Has Implications for the Ancestor of Betacoronavirus Lineage A

Susanna K. P. Lau; Patrick C. Y. Woo; Kenneth S. M. Li; Alan K. L. Tsang; Rachel Y. Y. Fan; Hayes K.H. Luk; Jian-Piao Cai; Kwok-Hung Chan; Bo-Jian Zheng; Ming Wang; Kwok-Yung Yuen

ABSTRACT We discovered a novel Betacoronavirus lineage A coronavirus, China Rattus coronavirus (ChRCoV) HKU24, from Norway rats in China. ChRCoV HKU24 occupied a deep branch at the root of members of Betacoronavirus 1, being distinct from murine coronavirus and human coronavirus HKU1. Its unique putative cleavage sites between nonstructural proteins 1 and 2 and in the spike (S) protein and low sequence identities to other lineage A betacoronaviruses (βCoVs) in conserved replicase domains support ChRCoV HKU24 as a separate species. ChRCoV HKU24 possessed genome features that resemble those of both Betacoronavirus 1 and murine coronavirus, being closer to Betacoronavirus 1 in most predicted proteins but closer to murine coronavirus by G+C content, the presence of a single nonstructural protein (NS4), and an absent transcription regulatory sequence for the envelope (E) protein. Its N-terminal domain (NTD) demonstrated higher sequence identity to the bovine coronavirus (BCoV) NTD than to the mouse hepatitis virus (MHV) NTD, with 3 of 4 critical sugar-binding residues in BCoV and 2 of 14 contact residues at the MHV NTD/murine CEACAM1a interface being conserved. Molecular clock analysis dated the time of the most recent common ancestor of ChRCoV HKU24, Betacoronavirus 1, and rabbit coronavirus HKU14 to about the year 1400. Cross-reactivities between other lineage A and B βCoVs and ChRCoV HKU24 nucleocapsid but not spike polypeptide were demonstrated. Using the spike polypeptide-based Western blot assay, we showed that only Norway rats and two oriental house rats from Guangzhou, China, were infected by ChRCoV HKU24. Other rats, including Norway rats from Hong Kong, possessed antibodies only against N protein and not against the spike polypeptide, suggesting infection by βCoVs different from ChRCoV HKU24. ChRCoV HKU24 may represent the murine origin of Betacoronavirus 1, and rodents are likely an important reservoir for ancestors of lineage A βCoVs. IMPORTANCE While bats and birds are hosts for ancestors of most coronaviruses (CoVs), lineage A βCoVs have never been found in these animals and the origin of Betacoronavirus lineage A remains obscure. We discovered a novel lineage A βCoV, China Rattus coronavirus HKU24 (ChRCoV HKU24), from Norway rats in China with a high seroprevalence. The unique genome features and phylogenetic analysis supported the suggestion that ChRCoV HKU24 represents a novel CoV species, occupying a deep branch at the root of members of Betacoronavirus 1 and being distinct from murine coronavirus. Nevertheless, ChRCoV HKU24 possessed genome characteristics that resemble those of both Betacoronavirus 1 and murine coronavirus. Our data suggest that ChRCoV HKU24 represents the murine origin of Betacoronavirus 1, with interspecies transmission from rodents to other mammals having occurred centuries ago, before the emergence of human coronavirus (HCoV) OC43 in the late 1800s. Rodents are likely an important reservoir for ancestors of lineage A βCoVs.


Clinical and Vaccine Immunology | 2012

Comparison of plaque- and enzyme-linked immunospot-based assays to measure the neutralizing activities of monoclonal antibodies specific to domain III of dengue virus envelope protein.

Li-Dong Liu; Kun Wen; Jie Li; Dongmei Hu; Yan-Fen Huang; Li-wen Qiu; Jian-Piao Cai; Xiaoyan Che

ABSTRACT The plaque reduction neutralization test (PRNT) is used widely to measure the neutralization activity of anti-dengue virus (DENV) antibodies, but it is time-consuming and labor-intensive and has low sample throughput. For fast and convenient measurement of neutralizing antibodies, especially in evaluating the efficiency of the DENV vaccines on a large scale, a new method is needed to replace PRNT. In recent decades, several microneutralization assays have been developed to overcome the limitations of PRNT. In the present study, we evaluated one of these, the enzyme-linked immunospot microneutralization test (ELISPOT-MNT), in comparison with PRNT. ELISPOT-MNT is performed in 96-well format, and the plaques are developed after 2 to 4 days using an ELISA to transform them into spots, which are detected automatically with an ELISPOT instrument. The assay is faster than PRNT, has a high throughput, and is more objective. We used 10 monoclonal antibodies (MAbs) against domain III of the DENV envelope protein (EDIII) to evaluate the two assays; all of these MAbs cross-react with all four serotypes of DENV as measured by immunofluorescence assay. The two neutralization assays were performed simultaneously to measure the 50% inhibitory concentration (IC50) of these MAbs. Using PRNT as the reference and treating IC50 values higher than 50 μg/ml of MAbs as negative, ELISPOT-MNT showed a sensitivity of 95.6% and specificity of 88.24% when 10 MAbs were tested against four DENV serotype strains. A good correlation (R2 = 0.672; P = 0.000) was observed between the two assays, making ELISPOT-MNT a potentially valuable method for measure of neutralizing antibodies against DENV.


Journal of Virology | 2015

Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination

Susanna K. P. Lau; Yun Feng; Honglin Chen; Hayes K.H. Luk; Weihong Yang; Kenneth S. M. Li; Yuzhen Zhang; Yi Huang; Zhi-Zhong Song; Wang-Ngai Chow; Rachel Y. Y. Fan; Syed Shakeel Ahmed; Hazel C. Yeung; Carol S. F. Lam; Jian-Piao Cai; Samson S. Y. Wong; Jasper Fuk-Woo Chan; Kwok-Yung Yuen; Hai-Lin Zhang; Patrick C. Y. Woo

ABSTRACT Despite the identification of horseshoe bats as the reservoir of severe acute respiratory syndrome (SARS)-related coronaviruses (SARSr-CoVs), the origin of SARS-CoV ORF8, which contains the 29-nucleotide signature deletion among human strains, remains obscure. Although two SARS-related Rhinolophus sinicus bat CoVs (SARSr-Rs-BatCoVs) previously detected in Chinese horseshoe bats (Rhinolophus sinicus) in Yunnan, RsSHC014 and Rs3367, possessed 95% genome identities to human and civet SARSr-CoVs, their ORF8 protein exhibited only 32.2 to 33% amino acid identities to that of human/civet SARSr-CoVs. To elucidate the origin of SARS-CoV ORF8, we sampled 348 bats of various species in Yunnan, among which diverse alphacoronaviruses and betacoronaviruses, including potentially novel CoVs, were identified, with some showing potential interspecies transmission. The genomes of two betacoronaviruses, SARSr-Rf-BatCoV YNLF_31C and YNLF_34C, from greater horseshoe bats (Rhinolophus ferrumequinum), possessed 93% nucleotide identities to human/civet SARSr-CoV genomes. Although these two betacoronaviruses displayed lower similarities than SARSr-Rs-BatCoV RsSHC014 and Rs3367 in S protein to civet SARSr-CoVs, their ORF8 proteins demonstrated exceptionally high (80.4 to 81.3%) amino acid identities to that of human/civet SARSr-CoVs, compared to SARSr-BatCoVs from other horseshoe bats (23.2 to 37.3%). Potential recombination events were identified around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. The expression of ORF8 subgenomic mRNA suggested that the ORF8 protein may be functional in SARSr-Rf-BatCoVs. The high Ka /Ks ratio among human SARS-CoVs compared to that among SARSr-BatCoVs supported that ORF8 is under strong positive selection during animal-to-human transmission. Molecular clock analysis using ORF1ab showed that SARSr-Rf-BatCoV YNLF_31C and YNLF_34C diverged from civet/human SARSr-CoVs in approximately 1990. SARS-CoV ORF8 originated from SARSr-CoVs of greater horseshoe bats through recombination, which may be important for animal-to-human transmission. IMPORTANCE Although horseshoe bats are the primary reservoir of SARS-related coronaviruses (SARSr-CoVs), it is still unclear how these bat viruses have evolved to cross the species barrier to infect civets and humans. Most human SARS-CoV epidemic strains contain a signature 29-nucleotide deletion in ORF8, compared to civet SARSr-CoVs, suggesting that ORF8 may be important for interspecies transmission. However, the origin of SARS-CoV ORF8 remains obscure. In particular, SARSr-Rs-BatCoVs from Chinese horseshoe bats (Rhinolophus sinicus) exhibited <40% amino acid identities to human/civet SARS-CoV in the ORF8 protein. We detected diverse alphacoronaviruses and betacoronaviruses among various bat species in Yunnan, China, including two SARSr-Rf-BatCoVs from greater horseshoe bats that possessed ORF8 proteins with exceptionally high amino acid identities to that of human/civet SARSr-CoVs. We demonstrated recombination events around ORF8 between SARSr-Rf-BatCoVs and SARSr-Rs-BatCoVs, leading to the generation of civet SARSr-CoVs. Our findings offer insight into the evolutionary origin of SARS-CoV ORF8 protein, which was likely acquired from SARSr-CoVs of greater horseshoe bats through recombination.

Collaboration


Dive into the Jian-Piao Cai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyan Che

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Kwok-Hung Chan

Li Ka Shing Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Honglin Chen

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Wang

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge