Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kenneth S. M. Li is active.

Publication


Featured researches published by Kenneth S. M. Li.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Emergence and predominance of an H5N1 influenza variant in China

Gavin J. D. Smith; Xiaohui Fan; Jun Wang; Kenneth S. M. Li; K. Qin; J. X. Zhang; Dhanasekaran Vijaykrishna; C. L. Cheung; Kai Huang; Jane M. Rayner; J. S. M. Peiris; Honglin Chen; Robert G. Webster; Yi Guan

The development of highly pathogenic avian H5N1 influenza viruses in poultry in Eurasia accompanied with the increase in human infection in 2006 suggests that the virus has not been effectively contained and that the pandemic threat persists. Updated virological and epidemiological findings from our market surveillance in southern China demonstrate that H5N1 influenza viruses continued to be panzootic in different types of poultry. Genetic and antigenic analyses revealed the emergence and predominance of a previously uncharacterized H5N1 virus sublineage (Fujian-like) in poultry since late 2005. Viruses from this sublineage gradually replaced those multiple regional distinct sublineages and caused recent human infection in China. These viruses have already transmitted to Hong Kong, Laos, Malaysia, and Thailand, resulting in a new transmission and outbreak wave in Southeast Asia. Serological studies suggest that H5N1 seroconversion in market poultry is low and that vaccination may have facilitated the selection of the Fujian-like sublineage. The predominance of this virus over a large geographical region within a short period directly challenges current disease control measures.


Virology | 2006

Molecular diversity of coronaviruses in bats

Patrick C. Y. Woo; Susanna K. P. Lau; Kenneth S. M. Li; Rosana W. S. Poon; Beatrice H. L. Wong; Hoi-Wah Tsoi; Bethanie C.K. Yip; Yi Huang; Kwok-Hung Chan; Kwok-Yung Yuen

Abstract The existence of coronaviruses in bats is unknown until the recent discovery of bat-SARS-CoV in Chinese horseshoe bats and a novel group 1 coronavirus in other bat species. Among 309 bats of 13 species captured from 20 different locations in rural areas of Hong Kong over a 16-month period, coronaviruses were amplified from anal swabs of 37 (12%) bats by RT-PCR. Phylogenetic analysis of RNA-dependent-RNA-polymerase (pol) and helicase genes revealed six novel coronaviruses from six different bat species, in addition to the two previously described coronaviruses. Among the six novel coronaviruses, four were group 1 coronaviruses (bat-CoV HKU2 from Chinese horseshoe bat, bat-CoV HKU6 from ricketts big-footed bat, bat-CoV HKU7 from greater bent-winged bat and bat-CoV HKU8 from lesser bent-winged bat) and two were group 2 coronaviruses (bat-CoV HKU4 from lesser bamboo bats and bat-CoV HKU5 from Japanese pipistrelles). An astonishing diversity of coronaviruses was observed in bats.


Journal of Virology | 2007

Comparative Analysis of Twelve Genomes of Three Novel Group 2c and Group 2d Coronaviruses Reveals Unique Group and Subgroup Features

Patrick C. Y. Woo; Ming Wang; Susanna K. P. Lau; Huifang Xu; Rosana W. S. Poon; Rongtong Guo; Beatrice H. L. Wong; Kai Gao; Hoi-Wah Tsoi; Yi Huang; Kenneth S. M. Li; Carol S. F. Lam; Kwok-Hung Chan; Bo-Jian Zheng; Kwok-Yung Yuen

ABSTRACT Twelve complete genomes of three novel coronaviruses—bat coronavirus HKU4 (bat-CoV HKU4), bat-CoV HKU5 (putative group 2c), and bat-CoV HKU9 (putative group 2d)—were sequenced. Comparative genome analysis showed that the various open reading frames (ORFs) of the genomes of the three coronaviruses had significantly higher amino acid identities to those of other group 2 coronaviruses than group 1 and 3 coronaviruses. Phylogenetic trees constructed using chymotrypsin-like protease, RNA-dependent RNA polymerase, helicase, spike, and nucleocapsid all showed that the group 2a and 2b and putative group 2c and 2d coronaviruses are more closely related to each other than to group 1 and 3 coronaviruses. Unique genomic features distinguishing between these four subgroups, including the number of papain-like proteases, the presence or absence of hemagglutinin esterase, small ORFs between the membrane and nucleocapsid genes and ORFs (NS7a and NS7b), bulged stem-loop and pseudoknot structures downstream of the nucleocapsid gene, transcription regulatory sequence, and ribosomal recognition signal for the envelope gene, were also observed. This is the first time that NS7a and NS7b downstream of the nucleocapsid gene has been found in a group 2 coronavirus. The high Ka/Ks ratio of NS7a and NS7b in bat-CoV HKU9 implies that these two group 2d-specific genes are under high selective pressure and hence are rapidly evolving. The four subgroups of group 2 coronaviruses probably originated from a common ancestor. Further molecular epidemiological studies on coronaviruses in the bats of other countries, as well as in other animals, and complete genome sequencing will shed more light on coronavirus diversity and their evolutionary histories.


Journal of Virology | 2007

Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China, 2000 to 2005.

K. M. Xu; Kenneth S. M. Li; G. J. D. Smith; Jun Li; H. Tai; J. X. Zhang; Robert G. Webster; J. S. M. Peiris; Honglin Chen; Yi Guan

ABSTRACT H9N2 influenza viruses have become established and maintain long-term endemicity in terrestrial poultry in Asian countries. Occasionally these viruses transmit to other mammals, including humans. Increasing epidemiological and laboratory findings suggest that quail may be an important host, as they are susceptible to different subtypes of influenza viruses. To better understand the role of quail in influenza virus ecology and evolution, H9N2 viruses isolated from quail during 2000 to 2005 were antigenically and genetically characterized. Our results showed that H9N2 viruses are prevalent year-round in southern China and replicate mainly asymptomatically in the respiratory tract of quail. Genetic analysis revealed that both the G1-like and Ck/Bei-like H9N2 lineages were cocirculating in quail since 2000. Phylogenetic analyses demonstrated that most of the isolates tested were double- or multiple-reassortant variants, with four G1-like and 16 Ck/Bei-like genotypes recognized. A novel genotype of G1-like virus became predominant in quail since 2003, while multiple Ck/Bei-like genotypes were introduced into quail, wherein they incorporated G1-like gene segments, but none of them became established in this host. Those Ck/Bei-like reassortants generated in quail have then been introduced into other poultry. These complex interactions form a two-way transmission system between quail and other types of poultry. The present study provides evidence that H9N2 and H5N1 subtype viruses have also exchanged gene segments to generate currently circulating reassortants of both subtypes that have pandemic potential. Continuing influenza virus surveillance in poultry is critical to understanding the genesis and emergence of potentially pandemic strains in this region.


Journal of Virology | 2013

Genetic Characterization of Betacoronavirus Lineage C Viruses in Bats Reveals Marked Sequence Divergence in the Spike Protein of Pipistrellus Bat Coronavirus HKU5 in Japanese Pipistrelle: Implications for the Origin of the Novel Middle East Respiratory Syndrome Coronavirus

Susanna K. P. Lau; Kenneth S. M. Li; Alan K. L. Tsang; Carol S. F. Lam; Shakeel Ahmed; Honglin Chen; Kwok-Hung Chan; Patrick C. Y. Woo; Kwok-Yung Yuen

ABSTRACT While the novel Middle East respiratory syndrome coronavirus (MERS-CoV) is closely related to Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat CoV HKU5 (Pi-BatCoV HKU5) in bats from Hong Kong, and other potential lineage C betacoronaviruses in bats from Africa, Europe, and America, its animal origin remains obscure. To better understand the role of bats in its origin, we examined the molecular epidemiology and evolution of lineage C betacoronaviruses among bats. Ty-BatCoV HKU4 and Pi-BatCoV HKU5 were detected in 29% and 25% of alimentary samples from lesser bamboo bat (Tylonycteris pachypus) and Japanese pipistrelle (Pipistrellus abramus), respectively. Sequencing of their RNA polymerase (RdRp), spike (S), and nucleocapsid (N) genes revealed that MERS-CoV is more closely related to Pi-BatCoV HKU5 in RdRp (92.1% to 92.3% amino acid [aa] identity) but is more closely related to Ty-BatCoV HKU4 in S (66.8% to 67.4% aa identity) and N (71.9% to 72.3% aa identity). Although both viruses were under purifying selection, the S of Pi-BatCoV HKU5 displayed marked sequence polymorphisms and more positively selected sites than that of Ty-BatCoV HKU4, suggesting that Pi-BatCoV HKU5 may generate variants to occupy new ecological niches along with its host in diverse habitats. Molecular clock analysis showed that they diverged from a common ancestor with MERS-CoV at least several centuries ago. Although MERS-CoV may have diverged from potential lineage C betacoronaviruses in European bats more recently, these bat viruses were unlikely to be the direct ancestor of MERS-CoV. Intensive surveillance for lineage C betaCoVs in Pipistrellus and related bats with diverse habitats and other animals in the Middle East may fill the evolutionary gap.


Journal of Virology | 2007

Characterization of Low-Pathogenic H5 Subtype Influenza Viruses from Eurasia: Implications for the Origin of Highly Pathogenic H5N1 Viruses

Lian Duan; Laura Campitelli; Xiaohui Fan; Y. H. C. Leung; Dhanasekaran Vijaykrishna; Jing Zhang; Isabella Donatelli; Mauro Delogu; Kenneth S. M. Li; Emanuela Foni; Chiara Chiapponi; Wai-Lan Wu; H. Kai; Robert G. Webster; Kennedy F. Shortridge; J. S. M. Peiris; Gavin J. D. Smith; Honglin Chen; Yi Guan

ABSTRACT Highly pathogenic avian influenza (HPAI) H5N1 viruses are now endemic in many Asian countries, resulting in repeated outbreaks in poultry and increased cases of human infection. The immediate precursor of these HPAI viruses is believed to be A/goose/Guangdong/1/96 (Gs/GD)-like H5N1 HPAI viruses first detected in Guangdong, China, in 1996. From 2000 onwards, many novel reassortant H5N1 influenza viruses or genotypes have emerged in southern China. However, precursors of the Gs/GD-like viruses and their subsequent reassortants have not been fully determined. Here we characterize low-pathogenic avian influenza (LPAI) H5 subtype viruses isolated from poultry and migratory birds in southern China and Europe from the 1970s to the 2000s. Phylogenetic analyses revealed that Gs/GD-like virus was likely derived from an LPAI H5 virus in migratory birds. However, its variants arose from multiple reassortments between Gs/GD-like virus and viruses from migratory birds or with those Eurasian viruses isolated in the 1970s. It is of note that unlike HPAI H5N1 viruses, those recent LPAI H5 viruses have not become established in aquatic or terrestrial poultry. Phylogenetic analyses revealed the dynamic nature of the influenza virus gene pool in Eurasia with repeated transmissions between the eastern and western extremities of the continent. The data also show reassortment between influenza viruses from domestic and migratory birds in this region that has contributed to the expanded diversity of the influenza virus gene pool among poultry in Eurasia.


Journal of Virology | 2010

Ecoepidemiology and Complete Genome Comparison of Different Strains of Severe Acute Respiratory Syndrome-Related Rhinolophus Bat Coronavirus in China Reveal Bats as a Reservoir for Acute, Self-Limiting Infection That Allows Recombination Events

Susanna K. P. Lau; Kenneth S. M. Li; Yi Huang; Chung-Tong Shek; Herman Tse; Ming Wang; Garnet K. Y. Choi; Huifang Xu; Carol S. F. Lam; Rongtong Guo; Kwok-Hung Chan; Bo-Jian Zheng; Patrick C. Y. Woo; Kwok-Yung Yuen

ABSTRACT Despite the identification of severe acute respiratory syndrome-related coronavirus (SARSr-CoV) in Rhinolophus Chinese horseshoe bats (SARSr-Rh-BatCoV) in China, the evolutionary and possible recombination origin of SARSr-CoV remains undetermined. We carried out the first study to investigate the migration pattern and SARSr-Rh-BatCoV genome epidemiology in Chinese horseshoe bats during a 4-year period. Of 1,401 Chinese horseshoe bats from Hong Kong and Guangdong, China, that were sampled, SARSr-Rh-BatCoV was detected in alimentary specimens from 130 (9.3%) bats, with peak activity during spring. A tagging exercise of 511 bats showed migration distances from 1.86 to 17 km. Bats carrying SARSr-Rh-BatCoV appeared healthy, with viral clearance occurring between 2 weeks and 4 months. However, lower body weights were observed in bats positive for SARSr-Rh-BatCoV, but not Rh-BatCoV HKU2. Complete genome sequencing of 10 SARSr-Rh-BatCoV strains showed frequent recombination between different strains. Moreover, recombination was detected between SARSr-Rh-BatCoV Rp3 from Guangxi, China, and Rf1 from Hubei, China, in the possible generation of civet SARSr-CoV SZ3, with a breakpoint at the nsp16/spike region. Molecular clock analysis showed that SARSr-CoVs were newly emerged viruses with the time of the most recent common ancestor (tMRCA) at 1972, which diverged between civet and bat strains in 1995. The present data suggest that SARSr-Rh-BatCoV causes acute, self-limiting infection in horseshoe bats, which serve as a reservoir for recombination between strains from different geographical locations within reachable foraging range. Civet SARSr-CoV is likely a recombinant virus arising from SARSr-CoV strains closely related to SARSr-Rh-BatCoV Rp3 and Rf1. Such frequent recombination, coupled with rapid evolution especially in ORF7b/ORF8 region, in these animals may have accounted for the cross-species transmission and emergence of SARS.


Virology | 2007

Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome.

Susanna K. P. Lau; Patrick C. Y. Woo; Kenneth S. M. Li; Yi Huang; Ming Wang; Carol S. F. Lam; Huifang Xu; Rongtong Guo; Kwok-Hung Chan; Bo-Jian Zheng; Kwok-Yung Yuen

Abstract Apart from bat-SARS-CoV, we have identified a novel group 1 coronavirus, bat-CoV HKU2, in Rhinolophus sinicus (Chinese horseshoe bats). Since it has been suggested that the receptor-binding motif (RBM) of SARS-CoV may have been acquired from a group 1 coronavirus, we conducted a surveillance study and identified bat-SARS-CoV and bat-CoV HKU2 in 8.7% and 7.5% respectively of R. sinicus in Hong Kong and Guangdong. Complete genome sequencing of four strains of bat-CoV HKU2 revealed the smallest coronavirus genome (27164 nucleotides) and a unique spike protein evolutionarily distinct from the rest of the genome. This spike protein, sharing similar deletions with other group 2 coronaviruses in its C-terminus, also contained a 15-amino acid peptide homologous to a corresponding peptide within the RBM of spike protein of SARS-CoV, which was absent in other coronaviruses except bat-SARS-CoV. These suggest a common evolutionary origin in the spike protein of bat-CoV HKU2, bat-SARS-CoV, and SARS-CoV.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats

Patrick C. Y. Woo; Susanna K. P. Lau; Beatrice H. L. Wong; Rachel Y. Y. Fan; Annette Y. P. Wong; Anna J. X. Zhang; Ying Wu; Garnet K. Y. Choi; Kenneth S. M. Li; Janet J.Y. Hui; Ming Wang; Bo-Jian Zheng; Kh Chan; Kwok-Yung Yuen

We describe the discovery and isolation of a paramyxovirus, feline morbillivirus (FmoPV), from domestic cat (Felis catus). FmoPV RNA was detected in 56 (12.3%) of 457 stray cats (53 urine, four rectal swabs, and one blood sample) by RT-PCR. Complete genome sequencing of three FmoPV strains showed genome sizes of 16,050 bases, the largest among morbilliviruses, because of unusually long 5′ trailer sequences of 400 nt. FmoPV possesses identical gene contents (3′-N-P/V/C-M-F-H-L-5′) and is phylogenetically clustered with other morbilliviruses. IgG against FmoPV N protein was positive in 49 sera (76.7%) of 56 RT-PCR–positive cats, but 78 (19.4%) of 401 RT-PCR–negative cats (P < 0.0001) by Western blot. FmoPV was isolated from CRFK feline kidney cells, causing cytopathic effects with cell rounding, detachment, lysis, and syncytia formation. FmoPV could also replicate in subsequent passages in primate Vero E6 cells. Infected cell lines exhibited finely granular and diffuse cytoplasmic fluorescence on immunostaining for FmoPV N protein. Electron microscopy showed enveloped virus with typical “herringbone” appearance of helical N in paramyxoviruses. Histological examination of necropsy tissues in two FmoPV-positive cats revealed interstitial inflammatory infiltrate and tubular degeneration/necrosis in kidneys, with decreased cauxin expression in degenerated tubular epithelial cells, compatible with tubulointerstitial nephritis (TIN). Immunohistochemical staining revealed FmoPV N protein-positive renal tubular cells and mononuclear cells in lymph nodes. A case-control study showed the presence of TIN in seven of 12 cats with FmoPV infection, but only two of 15 cats without FmoPV infection (P < 0.05), suggesting an association between FmoPV and TIN.


Journal of Clinical Microbiology | 2005

Human Parainfluenza Virus 4 Outbreak and the Role of Diagnostic Tests

Susanna K. P. Lau; Wing-Kin To; Philomena W. T. Tse; Alex K. H. Chan; Patrick C. Y. Woo; Hoi-Wah Tsoi; Annie F. Y. Leung; Kenneth S. M. Li; Paul K.S. Chan; Wilina Lim; Raymond W. H. Yung; Kwok-Hung Chan; Kwok-Yung Yuen

ABSTRACT Owing to the difficulties in isolating the virus and the lack of routine surveillance, the clinical significance of human parainfluenza virus 4 (HPIV-4) is less well defined than that of the other human parainfluenza viruses. We describe the first outbreak of HPIV-4 infection in a developmental disabilities unit, involving 38 institutionalized children and three staff members, during a 3-week period in autumn 2004. Most subjects had upper respiratory tract infections (URTI), while lower respiratory tract infections (LRTI) occurred in three children (7%), one complicated by respiratory failure requiring ventilation support. All patients recovered. Nasopharyngeal aspirates tested for HPIV-4 were positive by reverse transcriptase PCR (RT-PCR) in all 41 cases (100%), by direct immunofluorescence in 29 of 39 tested cases (74%), and by cell cultures in 6 of 37 cases (16%), and serum was positive for antibodies against HPIV-4 in all 35 cases (100%) with serum samples available. In addition, RT-PCR detected HPIV-4 in four children (three LRTI and one URTI) out of 115 patients with community-acquired respiratory tract infection. Molecular analysis of the 1,198-bp phosphoprotein sequences showed that HPIV-4 isolates among the cases were genetically similar, whereas the community controls were more genetically distant, supporting nosocomial transmission of a single HPIV-4 genotype during the outbreak. Moreover, the HPIV-4 causing the outbreak is more closely related to HPIV-4A than HPIV-4B. HPIV-4 may be an important cause of more severe respiratory illness in children. The present RT-PCR assay is a sensitive, specific, and rapid method for the diagnosing HPIV-4 infection. To better define the epidemiology and clinical spectrum of disease of HPIV-4 infections, HPIV-4 should be included in the routine panels of respiratory virus detection on respiratory specimens.

Collaboration


Dive into the Kenneth S. M. Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Wang

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Yi Huang

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Honglin Chen

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge