Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jianling Meng is active.

Publication


Featured researches published by Jianling Meng.


Philosophical Magazine | 2008

Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage

M.Q. Jiang; Z. Ling; Jianling Meng; L.H. Dai

Compression, tension and high-velocity plate impact experiments were performed on a typical tough Zr41.2Ti13.8Cu10Ni12.5Be22.5 (Vit 1) bulk metallic glass (BMG) over a wide range of strain rates from ∼10−4 to 106 s−1. Surprisingly, fine dimples and periodic corrugations on a nanoscale were also observed on dynamic mode I fracture surfaces of this tough Vit 1. Taking a broad overview of the fracture patterning of specimens, we proposed a criterion to assess whether the fracture of BMGs is essentially brittle or plastic. If the curvature radius of the crack tip is greater than the critical wavelength of meniscus instability [F. Spaepen, Acta Metall. 23 615 (1975); A.S. Argon and M. Salama, Mater. Sci. Eng. 23 219 (1976)], microscale vein patterns and nanoscale dimples appear on crack surfaces. However, in the opposite case, the local quasi-cleavage/separation through local atomic clusters with local softening in the background ahead of the crack tip dominates, producing nanoscale periodic corrugations. At the atomic cluster level, energy dissipation in fracture of BMGs is, therefore, determined by two competing elementary processes, viz. conventional shear transformation zones (STZs) and envisioned tension transformation zones (TTZs) ahead of the crack tip. Finally, the mechanism for the formation of nanoscale periodic corrugation is quantitatively discussed by applying the present energy dissipation mechanism.


ACS Nano | 2015

Tunable Piezoresistivity of Nanographene Films for Strain Sensing

Jing Zhao; G.S. Wang; Rong Yang; Xiaobo Lu; Meng Cheng; Congli He; Guibai Xie; Jianling Meng; Dongxia Shi; Guangyu Zhang

Graphene-based strain sensors have attracted much attention recently. Usually, there is a trade-off between the sensitivity and resistance of such devices, while larger resistance devices have higher energy consumption. In this paper, we report a tuning of both sensitivity and resistance of graphene strain sensing devices by tailoring graphene nanostructures. For a typical piezoresistive nanographene film with a sheet resistance of ∼100 KΩ/□, a gauge factor of more than 600 can be achieved, which is 50× larger than those in previous studies. These films with high sensitivity and low resistivity were also transferred on flexible substrates for device integration for force mapping. Each device shows a high gauge factor of more than 500, a long lifetime of more than 10(4) cycles, and a fast response time of less than 4 ms, suggesting a great potential in electronic skin applications.


Physical Review Letters | 2016

Thermally Induced Graphene Rotation on Hexagonal Boron Nitride.

D. Wang; Guorui Chen; Chaokai Li; Meng Cheng; Wei Yang; Shuang Wu; Guibai Xie; Jing Zhang; Jing Zhao; Xiaobo Lu; Peng Chen; G.S. Wang; Jianling Meng; Jian Tang; Rong Yang; Congli He; Donghua Liu; Dongxia Shi; Kenji Watanabe; Takashi Taniguchi; Ji Feng; Yuanbo Zhang; Guangyu Zhang

In this Letter, we report the observation of thermally induced rotation of graphene on hexagonal boron nitride (h-BN). After the rotation, two thermally stable configurations of graphene on h-BN with a relative lattice twisting angle of 0° (most stable) and 30° (metastable), respectively, were found. Graphene on h-BN with a twisting angle below (above) a critical angle of ∼12±2° tends to rotate towards 0° (30°) at a temperature of >100 °C, which is in line with our theoretical simulations. In addition, by manipulating the annealing temperature and the flake sizes of graphene, moiré superlattices with large spatial periods of graphene on h-BN are achieved. Our studies provide a detailed understanding of the thermodynamic properties of graphene on h-BN and a feasible approach to obtaining van der Waals heterostructures with aligned lattices.


Scientific Reports | 2013

Isolated nanographene crystals for nano-floating gate in charge trapping memory

Rong Yang; Chenxin Zhu; Jianling Meng; Zongliang Huo; Meng Cheng; Donghua Liu; Wei Yang; Dongxia Shi; Ming Liu; Guangyu Zhang

Graphene exhibits unique electronic properties, and its low dimensionality, structural robustness, and high work-function make it very promising as the charge storage media for memory applications. Along with the development of miniaturized and scaled up devices, nanostructured graphene emerges as an ideal material candidate. Here we proposed a novel non-volatile charge trapping memory utilizing isolate and uniformly distributed nanographene crystals as nano-floating gate with controllable capacity and excellent uniformity. Nanographene charge trapping memory shows large memory window (4.5 V) at low operation voltage (±8 V), good retention (>10 years), chemical and thermal stability (1000°C), as well as tunable memory performance employing with different tunneling layers. The fabrication of such memory structure is compatible with existing semiconductor processing thus has promise on low-cost integrated nanoscale memory applications.


Applied Physics Letters | 2008

Dynamic fracture instability of tough bulk metallic glass

Jianling Meng; Z. Ling; M.Q. Jiang; Hailan Zhang; L.H. Dai

We report the observations of a clear fractographic evolution from vein pattern, dimple structure, and then to periodic corrugation structure, followed by microbranching pattern, along the crack propagation direction in the dynamic fracture of a tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1) bulk metallic glass (BMGs) under high-velocity plate impact. A model based on fracture surface energy dissipation and void growth is proposed to characterize this fracture pattern transition. We find that once the dynamic crack propagation velocity reaches a critical fraction of Rayleigh wave speed, the crack instability occurs; hence, crack microbranching goes ahead. Furthermore, the correlation between the critical velocity of amorphous materials and their intrinsic strength such as Youngs modulus is uncovered. The results may shed new insight into dynamic fracture instability for BMGs


Journal of the American Chemical Society | 2017

Argon Plasma Induced Phase Transition in Monolayer MoS2

Jianqi Zhu; Zhichang Wang; Hua Yu; Na Li; Jing Zhang; Jianling Meng; Mengzhou Liao; Jing Zhao; Xiaobo Lu; Luojun Du; Rong Yang; Dongxia Shi; Ying Jiang; Guangyu Zhang

In this work, we report a facile, clean, controllable and scalable phase engineering technique for monolayer MoS2. We found that weak Ar-plasma bombardment can locally induce 2H→1T phase transition in monolayer MoS2 to form mosaic structures. These 2H→1T phase transitions are stabilized by point defects (single S-vacancies) and the sizes of induced 1T domains are typically a few nanometers, as revealed by scanning tunneling microscopy measurements. On the basis of a selected-area phase patterning process, we fabricated MoS2 FETs inducing 1T phase transition within the metal contact areas, which exhibit substantially improved device performances. Our results open up a new route for phase engineering in monolayer MoS2 and other transition metal dichalcogenide (TMD) materials.


Small | 2017

Precisely Aligned Monolayer MoS2 Epitaxially Grown on h-BN basal Plane.

Hua Yu; Zhengzhong Yang; Luojun Du; Jing Zhang; Jinan Shi; Wei Chen; Peng Chen; Mengzhou Liao; Jing Zhao; Jianling Meng; G.S. Wang; Jianqi Zhu; Rong Yang; Dongxia Shi; Lin Gu; Guangyu Zhang

Control of the precise lattice alignment of monolayer molybdenum disulfide (MoS2 ) on hexagonal boron nitride (h-BN) is important for both fundamental and applied studies of this heterostructure but remains elusive. The growth of precisely aligned MoS2 domains on the basal plane of h-BN by a low-pressure chemical vapor deposition technique is reported. Only relative rotation angles of 0° or 60° between MoS2 and h-BN basal plane are present. Domains with same orientation stitch and form single-crystal, domains with different orientations stitch and from mirror grain boundaries. In this way, the grain boundary is minimized and a continuous film stitched by these two types of domains with only mirror grain boundaries is obtained. This growth strategy is also applicable to other 2D materials growth.


Small | 2016

Rolling Up a Monolayer MoS2 Sheet.

Jianling Meng; G.S. Wang; Xiaomin Li; Xiaobo Lu; Jing Zhang; Hua Yu; Wei Chen; Luojun Du; Mengzhou Liao; Jing Zhao; Peng Chen; Jianqi Zhu; Xuedong Bai; Dongxia Shi; Guangyu Zhang

MoS2 nanoscrolls are formed by argon plasma treatment on monolayer MoS2 sheet. The nanoscale scroll formation is attributed to the partial removal of top sulfur layer in MoS2 during the argon plasma treatment process. This convenient, solvent-free, and high-yielding nanoscroll formation technique is also feasible for other 2D transition metal dichalcogenides.


Applied Physics Letters | 2016

Graphene nanoribbons epitaxy on boron nitride

Xiaobo Lu; Wei Yang; Shuopei Wang; Shuang Wu; Peng Chen; Jing Zhang; Jing Zhao; Jianling Meng; Guibai Xie; D. Wang; G.S. Wang; Ting Ting Zhang; Kenji Watanabe; Takashi Taniguchi; Rong Yang; Dongxia Shi; Guangyu Zhang

In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm2 V−1 s−1 for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moire pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.


Nanotechnology | 2015

Nanographene charge trapping memory with a large memory window.

Jianling Meng; Rong Yang; Jing Zhao; Congli He; G.S. Wang; Dongxia Shi; Guangyu Zhang

Nanographene is a promising alternative to metal nanoparticles or semiconductor nanocrystals for charge trapping memory. In general, a high density of nanographene is required in order to achieve high charge trapping capacity. Here, we demonstrate a strategy of fabrication for a high density of nanographene for charge trapping memory with a large memory window. The fabrication includes two steps: (1) direct growth of continuous nanographene film; and (2) isolation of the as-grown film into high-density nanographene by plasma etching. Compared with directly grown isolated nanographene islands, abundant defects and edges are formed in nanographene under argon or oxygen plasma etching, i.e. more isolated nanographene islands are obtained, which provides more charge trapping sites. As-fabricated nanographene charge trapping memory shows outstanding memory properties with a memory window as wide as ∼9 V at a relative low sweep voltage of ±8 V, program/erase speed of ∼1 ms and robust endurance of >1000 cycles. The high-density nanographene charge trapping memory provides an outstanding alternative for downscaling technology beyond the current flash memory.

Collaboration


Dive into the Jianling Meng's collaboration.

Top Co-Authors

Avatar

Dongxia Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guangyu Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rong Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

G.S. Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaobo Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hua Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianqi Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mengzhou Liao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge