Jianqi Zhu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jianqi Zhu.
Advanced Materials | 2016
Jing Zhang; Jinhuan Wang; Peng Chen; Yue Sun; Shuang Wu; Zhiyan Jia; Xiaobo Lu; Hua Yu; Wei Chen; Jianqi Zhu; Guibai Xie; Rong Yang; Dongxia Shi; Xiulai Xu; Jianyong Xiang; Kaihui Liu; Guangyu Zhang
Epitaxial growth of A-A and A-B stacking MoS2 on WS2 via a two-step chemical vapor deposition method is reported. These epitaxial heterostructures show an atomic clean interface and a strong interlayer coupling, as evidenced by systematic characterization. Low-frequency Raman breathing and shear modes are observed in commensurate stacking bilayers for the first time; these can serve as persuasive fingerprints for interfacial quality and stacking configurations.
Journal of the American Chemical Society | 2017
Jianqi Zhu; Zhichang Wang; Hua Yu; Na Li; Jing Zhang; Jianling Meng; Mengzhou Liao; Jing Zhao; Xiaobo Lu; Luojun Du; Rong Yang; Dongxia Shi; Ying Jiang; Guangyu Zhang
In this work, we report a facile, clean, controllable and scalable phase engineering technique for monolayer MoS2. We found that weak Ar-plasma bombardment can locally induce 2H→1T phase transition in monolayer MoS2 to form mosaic structures. These 2H→1T phase transitions are stabilized by point defects (single S-vacancies) and the sizes of induced 1T domains are typically a few nanometers, as revealed by scanning tunneling microscopy measurements. On the basis of a selected-area phase patterning process, we fabricated MoS2 FETs inducing 1T phase transition within the metal contact areas, which exhibit substantially improved device performances. Our results open up a new route for phase engineering in monolayer MoS2 and other transition metal dichalcogenide (TMD) materials.
Small | 2017
Hua Yu; Zhengzhong Yang; Luojun Du; Jing Zhang; Jinan Shi; Wei Chen; Peng Chen; Mengzhou Liao; Jing Zhao; Jianling Meng; G.S. Wang; Jianqi Zhu; Rong Yang; Dongxia Shi; Lin Gu; Guangyu Zhang
Control of the precise lattice alignment of monolayer molybdenum disulfide (MoS2 ) on hexagonal boron nitride (h-BN) is important for both fundamental and applied studies of this heterostructure but remains elusive. The growth of precisely aligned MoS2 domains on the basal plane of h-BN by a low-pressure chemical vapor deposition technique is reported. Only relative rotation angles of 0° or 60° between MoS2 and h-BN basal plane are present. Domains with same orientation stitch and form single-crystal, domains with different orientations stitch and from mirror grain boundaries. In this way, the grain boundary is minimized and a continuous film stitched by these two types of domains with only mirror grain boundaries is obtained. This growth strategy is also applicable to other 2D materials growth.
ACS Applied Materials & Interfaces | 2016
Jing Zhao; Hua Yu; Wei Chen; Rong Yang; Jianqi Zhu; Mengzhou Liao; Dongxia Shi; Guangyu Zhang
The performance of two-dimensional (2D) MoS2 devices depends largely on the quality of the MoS2 itself. Existing fabrication process for 2D MoS2 relies on lithography and etching. However, it is extremely difficult to achieve clean patterns without any contaminations or passivations. Here we report a peel-off pattering of MoS2 films on substrates based on a proper interface engineering. The peel-off process utilizes the strong adhesion between gold and MoS2 and removes the MoS2 film contact with gold directly, leading to clean MoS2 pattern generation without residuals. Significantly improved electrical performances including high mobility ∼17.1 ± 8.3 cm(2)/(V s) and on/off ratio ∼5.6 ± 3.6 × 10(6) were achieved. Such clean fabrication technique paves a way to high quality MoS2 devices for various electrical and optical applications.
ACS Nano | 2017
Hua Yu; Mengzhou Liao; Wenjuan Zhao; Guodong Liu; X. J. Zhou; Zheng Wei; Xiaozhi Xu; Kaihui Liu; Zonghai Hu; Ke Deng; Shuyun Zhou; Jinan Shi; Lin Gu; Cheng Shen; Tingting Zhang; Luojun Du; Li Xie; Jianqi Zhu; Wei Chen; Rong Yang; Dongxia Shi; Guangyu Zhang
Large scale epitaxial growth and transfer of monolayer MoS2 has attracted great attention in recent years. Here, we report the wafer-scale epitaxial growth of highly oriented continuous and uniform monolayer MoS2 films on single-crystalline sapphire wafers by chemical vapor deposition (CVD) method. The epitaxial film is of high quality and stitched by many 0°, 60° domains and 60°-domain boundaries. Moreover, such wafer-scale monolayer MoS2 films can be transferred and stacked by a simple stamp-transfer process, and the substrate is reusable for subsequent growth. Our progress would facilitate the scalable fabrication of various electronic, valleytronic, and optoelectronic devices for practical applications.
Small | 2016
Jianling Meng; G.S. Wang; Xiaomin Li; Xiaobo Lu; Jing Zhang; Hua Yu; Wei Chen; Luojun Du; Mengzhou Liao; Jing Zhao; Peng Chen; Jianqi Zhu; Xuedong Bai; Dongxia Shi; Guangyu Zhang
MoS2 nanoscrolls are formed by argon plasma treatment on monolayer MoS2 sheet. The nanoscale scroll formation is attributed to the partial removal of top sulfur layer in MoS2 during the argon plasma treatment process. This convenient, solvent-free, and high-yielding nanoscroll formation technique is also feasible for other 2D transition metal dichalcogenides.
Applied Physics Letters | 2014
Siqi Liu; Jianqi Zhu; L. P. He; Jiyan Dai; Huibin Lu; Lin Wu; Kui-juan Jin; Guozhen Yang; Huishan Zhu
Based on the requirements for studying the dynamic process of proteinase action substrates in life science, we selected six random proteins including 1L-10, SCGB2A2, CENPQ, GST, HK1, KLHL7, as well as five different concentrations of 1L-10 proteins of 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, and 0.0625 mg/ml, and fabricated two types of substrate protein microarrays, respectively. We detected the dynamic processes of proteins degraded by proteinase K using oblique-incidence reflectivity difference (OIRD) method in a label-free and real-time manner. We obtained the relevant degradation velocities and the degradation time. The experimental results demonstrate that OIRD has the ability to study proteinase action substrates which is out of reach of label methods and is expected to offer opportunities to determine protease-substrate relationships on the systems biology level.
Applied Physics Letters | 2017
Luojun Du; Hua Yu; Mengzhou Liao; Shuopei Wang; Li Xie; Xiaobo Lu; Jianqi Zhu; Na Li; Cheng Shen; Peng Chen; Rong Yang; Dongxia Shi; Guangyu Zhang
Stacking two-dimensional materials into van der Waals heterostructures with distinct interlayer twisting angles opens up new strategies for electronic structure and physical property engineering. Here, we investigate how the interlayer twisting angles affect the photoluminescence (PL) and Raman spectra of the MoS2/graphene heterostructures. Based on a series of heterostructure samples with different interlayer twisting angles, we found that the PL and Raman spectra of the monolayer MoS2 in these heterostructures are strongly twisting angle dependent. When the interlayer twisting angle evolves from 0° to 30°, both the PL intensity and emission energy increase, while the splitting of the E2g Raman mode decreases gradually. The observed phenomena are attributed to the twisting angle dependent interlayer interaction and misorientation-induced lattice strain between MoS2 and graphene.
Nature Communications | 2018
Mengzhou Liao; Ze-Wen Wu; Luojun Du; Tingting Zhang; Zheng Wei; Jianqi Zhu; Hua Yu; Jian Tang; Lin Gu; Yanxia Xing; Rong Yang; Dongxia Shi; Yugui Yao; Guangyu Zhang
Van der Waals heterostructures stacked from different two-dimensional materials offer a unique platform for addressing many fundamental physics and construction of advanced devices. Twist angle between the two individual layers plays a crucial role in tuning the heterostructure properties. Here we report the experimental investigation of the twist angle-dependent conductivities in MoS2/graphene van der Waals heterojunctions. We found that the vertical conductivity of the heterojunction can be tuned by ∼5 times under different twist configurations, and the highest/lowest conductivity occurs at a twist angle of 0°/30°. Density functional theory simulations suggest that this conductivity change originates from the transmission coefficient difference in the heterojunctions with different twist angles. Our work provides a guidance in using the MoS2/graphene heterojunction for electronics, especially on reducing the contact resistance in MoS2 devices as well as other TMDCs devices contacted by graphene.Twisting vertically stacked individual layers of two-dimensional materials can trigger exciting fundamental physics and advanced electronic device applications. Here, the authors report five times enhancement in vertical heterojunction conductivity on rotating MoS2 over graphene.
Advanced electronic materials | 2016
Jing Zhao; Wei Chen; Jianling Meng; Hua Yu; Mengzhou Liao; Jianqi Zhu; Rong Yang; Dongxia Shi; Guangyu Zhang