Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yinfei Tan is active.

Publication


Featured researches published by Yinfei Tan.


Nature Genetics | 2011

Germline BAP1 mutations predispose to malignant mesothelioma

Joseph R. Testa; Mitchell Cheung; Jianming Pei; Jennifer E. Below; Yinfei Tan; Eleonora Sementino; Nancy J. Cox; A. Umran Dogan; Harvey I. Pass; Sandra Trusa; Mary Hesdorffer; Masaki Nasu; Amy Powers; Zeyana Rivera; Sabahattin Comertpay; Mika Tanji; Giovanni Gaudino; Haining Yang; Michele Carbone

Because only a small fraction of asbestos-exposed individuals develop malignant mesothelioma, and because mesothelioma clustering is observed in some families, we searched for genetic predisposing factors. We discovered germline mutations in the gene encoding BRCA1 associated protein-1 (BAP1) in two families with a high incidence of mesothelioma, and we observed somatic alterations affecting BAP1 in familial mesotheliomas, indicating biallelic inactivation. In addition to mesothelioma, some BAP1 mutation carriers developed uveal melanoma. We also found germline BAP1 mutations in 2 of 26 sporadic mesotheliomas; both individuals with mutant BAP1 were previously diagnosed with uveal melanoma. We also observed somatic truncating BAP1 mutations and aberrant BAP1 expression in sporadic mesotheliomas without germline mutations. These results identify a BAP1-related cancer syndrome that is characterized by mesothelioma and uveal melanoma. We hypothesize that other cancers may also be involved and that mesothelioma predominates upon asbestos exposure. These findings will help to identify individuals at high risk of mesothelioma who could be targeted for early intervention.


Cancer Research | 2014

Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma

Jinfei Xu; Yuwaraj Kadariya; Mitchell Cheung; Jianming Pei; Jacqueline Talarchek; Eleonora Sementino; Yinfei Tan; Craig W. Menges; Kathy Q. Cai; Samuel Litwin; Hongzhuang Peng; Jayashree Karar; Frank J. Rauscher; Joseph R. Testa

Malignant mesotheliomas are highly aggressive tumors usually caused by exposure to asbestos. Germline-inactivating mutations of BAP1 predispose to mesothelioma and certain other cancers. However, why mesothelioma is the predominate malignancy in some BAP1 families and not others, and whether exposure to asbestos is required for development of mesothelioma in BAP1 mutation carriers are not known. To address these questions experimentally, we generated a Bap1(+/-) knockout mouse model to assess its susceptibility to mesothelioma upon chronic exposure to asbestos. Bap1(+/-) mice exhibited a significantly higher incidence of asbestos-induced mesothelioma than wild-type (WT) littermates (73% vs. 32%, respectively). Furthermore, mesotheliomas arose at an accelerated rate in Bap1(+/-) mice than in WT animals (median survival, 43 weeks vs. 55 weeks after initial exposure, respectively) and showed increased invasiveness and proliferation. No spontaneous mesotheliomas were seen in unexposed Bap1(+/-) mice followed for up to 87 weeks of age. Mesothelioma cells from Bap1(+/-) mice showed biallelic inactivation of Bap1, consistent with its proposed role as a recessive cancer susceptibility gene. Unlike in WT mice, mesotheliomas from Bap1(+/-) mice did not require homozygous loss of Cdkn2a. However, normal mesothelial cells and mesothelioma cells from Bap1(+/-) mice showed downregulation of Rb through a p16(Ink4a)-independent mechanism, suggesting that predisposition of Bap1(+/-) mice to mesothelioma may be facilitated, in part, by cooperation between Bap1 and Rb. Drawing parallels to human disease, these unbiased genetic findings indicate that BAP1 mutation carriers are predisposed to the tumorigenic effects of asbestos and suggest that high penetrance of mesothelioma requires such environmental exposure.


Journal of Biological Chemistry | 2010

Appl1 Is Dispensable for Mouse Development, and Loss of Appl1 Has Growth Factor-selective Effects on Akt Signaling in Murine Embryonic Fibroblasts

Yinfei Tan; Huihong You; Chao Wu; Deborah A. Altomare; Joseph R. Testa

The adaptor protein APPL1 (adaptor protein containing pleckstrin homology (PH), phosphotyrosine binding (PTB), and leucine zipper motifs) was first identified as a binding protein of AKT2 by yeast two-hybrid screening. APPL1 was subsequently found to bind to several membrane-bound receptors and was implicated in their signal transduction through AKT and/or MAPK pathways. To determine the unambiguous role of Appl1 in vivo, we generated Appl1 knock-out mice. Here we report that Appl1 knock-out mice are viable and fertile. Appl1-null mice were born at expected Mendelian ratios, without obvious phenotypic abnormalities. Moreover, Akt activity in various fetal tissues was unchanged compared with that observed in wild-type littermates. Studies of isolated Appl1−/− murine embryonic fibroblasts (MEFs) showed that Akt activation by epidermal growth factor, insulin, or fetal bovine serum was similar to that observed in wild-type MEFs, although Akt activation by HGF was diminished in Appl1−/− MEFs. To rule out a possible redundant role played by the related Appl2, we used small interfering RNA to knock down Appl2 expression in Appl1−/− MEFs. Unexpectedly, cell survival was unaffected under normal culture conditions, and activation of Akt was unaltered following epidermal growth factor stimulation, although Akt activity did decrease further after HGF stimulation. Furthermore, we found that Appl proteins are required for HGF-induced cell survival and migration via activation of Akt. Our studies suggest that Appl1 is dispensable for development and only participate in Akt signaling under certain conditions.


Cancer Research | 2010

Upregulation of DLX5 promotes ovarian cancer cell proliferation by enhancing IRS-2-AKT signaling.

Yinfei Tan; Mitchell Cheung; Jianming Pei; Craig W. Menges; Andrew K. Godwin; Joseph R. Testa

The distal-less homeobox gene (dlx) 5 encodes a transcription factor that controls jaw formation and appendage differentiation during embryonic development. We had previously found that Dlx5 is overexpressed in an Akt2 transgenic model of T-cell lymphoma. To investigate if DLX5 is involved in human cancer, we screened its expression in the NCI 60 cancer cell line panel. DLX5 was frequently upregulated in cell lines derived from several tumor types, including ovarian cancer. We next validated its upregulation in primary ovarian cancer specimens. Stable knockdown of DLX5 by lentivirus-mediated transduction of short hairpin RNA (shRNA) resulted in reduced proliferation of ovarian cancer cells due to inhibition of cell cycle progression in connection with the downregulation of cyclins A, B1, D1, D2, and E, and decreased phosphorylation of AKT. Cell proliferation resumed following introduction of a DLX5 cDNA harboring wobbled mutations at the shRNA-targeting sites. Cell proliferation was also rescued by transduction of a constitutively active form of AKT. Intriguingly, downregulation of IRS-2 and MET contributed to the suppression of AKT signaling. Moreover, DLX5 was found to directly bind to the IRS-2 promoter and augmented its transcription. Knockdown of DLX5 in xenografts of human ovarian cancer cells resulted in markedly diminished tumor size. In addition, DLX5 was found to cooperate with HRAS in the transformation of human ovarian surface epithelial cells. Together, these data suggest that DLX5 plays a significant role in the pathogenesis of some ovarian cancers.


Cancer Research | 2008

A Novel Recurrent Chromosomal Inversion Implicates the Homeobox Gene Dlx5 in T-Cell Lymphomas from Lck-Akt2 Transgenic Mice

Yinfei Tan; Roman A. Timakhov; Mamta Rao; Deborah A. Altomare; Jinfei Xu; Zemin Liu; Qingshen Gao; Suresh C. Jhanwar; Antonio Di Cristofano; David L. Wiest; Janice E. Knepper; Joseph R. Testa

The oncogene v-akt was isolated from a retrovirus that induced murine thymic lymphomas. Transgenic mice expressing a constitutively activated form of the cellular homologue Akt2 specifically in immature T cells develop spontaneous thymic lymphomas. We hypothesized that tumors from these mice might exhibit oncogenic chromosomal rearrangements that cooperate with activated Akt2 in lymphomagenesis. Cytogenetic analysis revealed a recurrent clonal inversion of chromosome 6, inv(6), in thymic lymphomas from multiple transgenic founder lines, including one line in which 15 of 15 primary tumors exhibited this same rearrangement. Combined fluorescence in situ hybridization, PCR, and DNA sequence analyses showed that the distal inv(6) breakpoint resides at the T-cell receptor beta chain locus, Tcrb. The proximal breakpoint maps to a region near a locus comprising the linked homeobox/transcription factor genes Dlx5 and Dlx6. Expression analysis of genes translocated to the vicinity of the Tcrb enhancer revealed that Dlx5 and Dlx6 are overexpressed in tumors exhibiting the inv(6). Experimental overexpression of Dlx5 in mammalian cells resulted in enhanced cell proliferation and increased colony formation, and clonogenic assays revealed cooperativity when both Dlx5 and activated Akt2 were coexpressed. In addition, DLX5, but not DLX6, was found to be abundantly expressed in three of seven human T-cell lymphomas tested. These findings suggest that the Dlx5 can act as an oncogene by cooperating with Akt2 to promote lymphomagenesis.


Genesis | 2010

Appl1 is dispensable for Akt signaling in vivo and mouse T-cell development.

Yinfei Tan; Huihong You; Francis Coffey; David L. Wiest; Joseph R. Testa

Appl1 (Adaptor protein containing pleckstrin homology [PH], phosphotyrosine binding [PTB], and Leucine zipper motifs) is an adaptor that participates in cell signaling by interacting with various signaling molecules including Akt, PI3‐kinase (PI3K), Rab5, adiponectin receptor, and TrkA. By using RNA knockdown technology, Appl1 has been implicated in zebrafish development and murine glucose metabolism. To investigate the unambiguous role of Appl1 in vivo, we generated a knockout mouse in which exon1 of the Appl1 gene was disrupted using gene trap methodology. Homozygous Appl1 knockout mice with ubiquitous loss of Appl1 protein expression were viable, grossly normal, and born at expected Mendelian ratios. Moreover, activation of Akt and the downstream effecter Gsk3β was unaffected in vivo. We next performed glucose and insulin tolerance tests and found that glucose metabolism is normal in Appl1‐null mice. We also tested the effect of Appl1 loss on Akt signaling in T cells, because we discovered that Appl1 strongly interacts with the p110β subunit of PI3K in T lymphocytes. However, such interaction was found to be dispensable for Akt signaling in thymic T cells and T‐cell development. Moreover, Appl1 loss did not affect DNA synthesis in cultured thymocytes, although loss of Appl1 was associated with a slight increase in ConA‐stimulated splenic T‐cell viability/proliferation. Collectively, our findings indicate that Appl1 is dispensable for Akt signaling in vivo and T‐cell differentiation. genesis 48:531–539, 2010.


Genes, Chromosomes and Cancer | 2009

Recurrent Chromosomal Rearrangements Implicate Oncogenes Contributing to T-Cell Lymphomagenesis in Lck-MyrAkt2 Transgenic Mice

Roman A. Timakhov; Yinfei Tan; Mamta Rao; Zemin Liu; Deborah A. Altomare; Jianming Pei; David L. Wiest; Olga O. Favorova; Janice E. Knepper; Joseph R. Testa

The oncogene v‐akt was isolated from a retrovirus that induced naturally occurring thymic lymphomas in AKR mice. We hypothesized that constitutive activation of Akt2 could serve as a first hit for the clonal expansion of malignant T‐cells by promoting cell survival and genomic instability, leading to chromosome alterations. Furthermore, genes that cooperate with Akt2 to promote malignant transformation may reside at translocation/inversion junctions found in spontaneous thymic lymphomas from transgenic mice expressing constitutively active Akt2 specifically in T cells. Cytogenetic analysis revealed that thymic tumors from multiple founder lines exhibited either of two recurrent chromosomal rearrangements, inv(6)(A2B1) or t(14;15)(C2;D1). Fluorescence in situ hybridization, array CGH, and PCR analysis were used to delineate the inv(6) and t(14;15) breakpoints. Both rearrangements involved T‐cell receptor loci. The inv(6) results in robust upregulation of the homeobox/transcription factor gene Dlx5 because of its relocation near the Tcrb enhancer. The t(14;15) places the Tcra enhancer in the vicinity of the Myc proto‐oncogene, resulting in upregulated Myc expression. These findings suggest that activation of the Akt pathway can act as the initial hit to promote cell survival and genomic instability, whereas the acquisition of T‐cell‐specific overexpression of Dlx5 or Myc leads to lymphomagenesis.


Journal of Cellular Physiology | 2016

Appl1 and Appl2 are Expendable for Mouse Development But Are Essential for HGF‐Induced Akt Activation and Migration in Mouse Embryonic Fibroblasts

Yinfei Tan; Xiaoban Xin; Francis Coffey; David L. Wiest; Lily Q. Dong; Joseph R. Testa

Although Appl1 and Appl2 have been implicated in multiple cellular activities, we and others have found that Appl1 is dispensable for mouse embryonic development, suggesting that Appl2 can substitute for Appl1 during development. To address this possibility, we generated conditionally targeted Appl2 mice. We found that ubiquitous Appl2 knockout (Appl2−/−) mice, much like Appl1−/− mice, are viable and grow normally to adulthood. Intriguingly, when Appl1−/− mice were crossed with Appl2−/− mice, we found that homozygous Appl1;Appl2 double knockout (DKO) animals are also viable and grossly normal with regard to reproductive potential and postnatal growth. Appl2‐null and DKO mice were found to exhibit altered red blood cell physiology, with erythrocytes from these mice generally being larger and having a more irregular shape than erythrocytes from wild type mice. Although Appl1/2 proteins have been previously shown to have a very strong interaction with phosphatidylinositol‐3 kinase (Pi3k) in thymic T cells, Pi3k‐Akt signaling and cellular differentiation was unaltered in thymocytes from Appl1;Appl2 (DKO) mice. However, Appl1/2‐null mouse embryonic fibroblasts exhibited defects in HGF‐induced Akt activation, migration, and invasion. Taken together, these data suggest that Appl1 and Appl2 are required for robust HGF cell signaling but are dispensable for embryonic development and reproduction. J. Cell. Physiol. 231: 1142–1150, 2016.


Cancer Biology & Therapy | 2015

Co-targeting of Akt and Myc inhibits viability of lymphoma cells from Lck-Dlx5 mice

Yinfei Tan; Eleonora Sementino; Jianming Pei; Yuwaraj Kadariya; Timothy Ito; Joseph R. Testa

Constitutive activation of AKT is a frequent occurrence in the development of human T-cell acute lymphocytic leukemia/lymphomas (T-ALLs), due largely to inactivation of PTEN. Up regulation of MYC is also commonly observed in human T-ALLs. We previously demonstrated that expression of a constitutively active form of Lck-Akt2 alone is sufficient to initiate T-cell lymphoma in mice, and that tumor formation typically requires up regulation of Myc or Dlx5 caused by specific chromosomal rearrangements. Furthermore, Lck-Dlx5 mice develop T-ALLs that consistently acquire overexpression of Myc and activation of Akt, the latter due to loss of Pten expression. Proliferation of T-ALL cells from Lck-Dlx5 mice was found to be highly sensitive to the Akt pathway inhibitors BEZ235 and RAD001, as well as to JQ1, an inhibitor of bromodomain proteins, one of which (BRD4) regulates Myc transcription. Additionally, low concentrations of BEZ235 were found to cooperate with JQ1 to enhance cell cycle arrest. Higher concentrations of BEZ235 (≥0.5 µM) promoted cell death, although the addition of JQ1 did not result in a further increase in apoptosis. In contrast, the specific Myc inhibitor 10058-F4 caused apoptosis, and when combined with BEZ235 (≥0.5 µM), an enhanced effect on apoptosis was consistently observed. In addition, BEZ235 and RAD001 potentiated vincristine-induced apoptosis when the cells were treated with both drugs simultaneously, whereas pretreatment with BEZ235 antagonized the cell-killing effect of vincristine. Collectively, these experimental findings provide rationale for the design of novel combination therapies for T-ALL that includes targeting of AKT and MYC.


Oncotarget | 2017

The homeoprotein Dlx5 drives murine T-cell lymphomagenesis by directly transactivating Notch and upregulating Akt signaling

Yinfei Tan; Eleonora Sementino; Jinfei Xu; Jianming Pei; Zemin Liu; Timothy Ito; Kathy Q. Cai; Suraj Peri; Andres J. Klein-Szanto; David L. Wiest; Joseph R. Testa

Homeobox genes play a critical role in embryonic development, but they have also been implicated in cancer through mechanisms that are largely unknown. While not expressed during normal T-cell development, homeobox transcription factor genes can be reactivated via recurrent chromosomal rearrangements in human T-cell acute leukemia/lymphoma (T-ALL), a malignancy often associated with activated Notch and Akt signaling. To address how epigenetic reprogramming via an activated homeobox gene might contribute to T-lymphomagenesis, we investigated a transgenic mouse model with thymocyte-specific overexpression of the Dlx5 homeobox gene. We demonstrate for the first time that Dlx5 induces T-cell lymphomas with high penetrance. Integrated ChIP-seq and mRNA microarray analyses identified Notch1/3 and Irs2 as direct transcriptional targets of Dlx5, a gene signature unique to lymphomas from Lck-Dlx5 mice as compared to T-cell lymphomas from Lck-MyrAkt2 mice, which were previously reported by our group. Moreover, promoter/enhancer studies confirmed that Dlx5 directly transactivates Notch expression. Notch1/3 expression and Irs2-induced Akt signaling were upregulated throughout early stages of T-cell development, which promoted cell survival during β-selection of T lymphocytes. Dlx5 was required for tumor maintenance via its activation of Notch and Akt, as tumor cells were highly sensitive to Notch and Akt inhibitors. Together, these findings provide unbiased genetic and mechanistic evidence that Dlx5 acts as an oncogene when aberrantly expressed in T cells, and that it is a novel discovery that Notch is a direct target of Dlx5. These experimental findings provide mechanistic insights about how reactivation of the Dlx5 gene can drive T-ALL by aberrant epigenetic reprogramming of the T-cell genome.

Collaboration


Dive into the Yinfei Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianming Pei

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah A. Altomare

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Jinfei Xu

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zemin Liu

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge