Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jiawen Wang is active.

Publication


Featured researches published by Jiawen Wang.


Journal of Virology | 2012

Small-Molecule Inhibition of Human Immunodeficiency Virus Type 1 Replication by Targeting the Interaction between Vif and ElonginC

Tao Zuo; Donglai Liu; Wei Lv; Xiaodan Wang; Jiawen Wang; Mingyu Lv; Wenlin Huang; Jiaxin Wu; Haihong Zhang; Hongwei Jin; Liangren Zhang; Wei Kong; Xianghui Yu

ABSTRACT The HIV-1 viral infectivity factor (Vif) protein is essential for viral replication. Vif recruits cellular ElonginB/C-Cullin5 E3 ubiquitin ligase to target the host antiviral protein APOBEC3G (A3G) for proteasomal degradation. In the absence of Vif, A3G is packaged into budding HIV-1 virions and introduces multiple mutations in the newly synthesized minus-strand viral DNA to restrict virus replication. Thus, the A3G-Vif-E3 complex represents an attractive target for development of novel anti-HIV drugs. In this study, we identified a potent small molecular compound (VEC-5) by virtual screening and validated its anti-Vif activity through biochemical analysis. We show that VEC-5 inhibits virus replication only in A3G-positive cells. Treatment with VEC-5 increased cellular A3G levels when Vif was coexpressed and enhanced A3G incorporation into HIV-1 virions to reduce viral infectivity. Coimmunoprecipitation and computational analysis further attributed the anti-Vif activity of VEC-5 to the inhibition of Vif from direct binding to the ElonginC protein. These findings support the notion that suppressing Vif function can liberate A3G to carry out its antiviral activity and demonstrate that regulation of the Vif-ElonginC interaction is a novel target for small-molecule inhibitors of HIV-1.


Journal of Virology | 2011

Identification of a Cullin5-ElonginB-ElonginC E3 Complex in Degradation of Feline Immunodeficiency Virus Vif-Mediated Feline APOBEC3 Proteins

Jiawen Wang; Wenyan Zhang; Mingyu Lv; Tao Zuo; Wei Kong; Xianghui Yu

ABSTRACT Various feline APOBEC3 (fA3) proteins exhibit broad antiviral activities against a wide range of viruses, such as feline immunodeficiency virus (FIV), feline foamy virus (FFV), and feline leukemia virus (FeLV), as well as those of other species. This activity can be counteracted by the FIV Vif protein, but the mechanism by which FIV Vif suppresses fA3s is unknown. In the present study, we demonstrated that FIV Vif could act via a proteasome-dependent pathway to overcome fA3s. FIV Vif interacted with feline cellular proteins Cullin5 (Cul5), ElonginB, and ElonginC to form an E3 complex to induce degradation of fA3s. Both the dominant-negative Cul5 mutant and a C-terminal hydrophilic replacement ElonginC mutant potently disrupted the FIV Vif activity against fA3s. Furthermore, we identified a BC-box motif in FIV Vif that was essential for the recruitment of E3 ubiquitin ligase and also required for FIV Vif-mediated degradation of fA3s. Moreover, despite the lack of either a Cul5-box or a HCCH zinc-binding motif, FIV Vif specifically selected Cul5. Therefore, FIV Vif may interact with Cul5 via a novel mechanism. These finding imply that SOCS proteins may possess distinct mechanisms to bind Cul5 during formation of the Elongin-Cullin-SOCS box complex.


Retrovirology | 2013

Interactions between HIV-1 Vif and human ElonginB-ElonginC are important for CBF-β binding to Vif

Xiaodan Wang; Xiaoying Wang; Haihong Zhang; Mingyu Lv; Tao Zuo; Hui Wu; Jiawen Wang; Donglai Liu; Chu Wang; Jingyao Zhang; Xu Li; Jiaxin Wu; Bin Yu; Wei Kong; Xianghui Yu

BackgroundThe HIV-1 accessory factor Vif is necessary for efficient viral infection in non-permissive cells. Vif antagonizes the antiviral activity of human cytidine deaminase APOBEC3 proteins that confer the non-permissive phenotype by tethering them (APOBEC3DE/3F/3G) to the Vif-CBF-β-ElonginB-ElonginC-Cullin5-Rbx (Vif-CBF-β-EloB-EloC-Cul5-Rbx) E3 complex to induce their proteasomal degradation. EloB and EloC were initially reported as positive regulatory subunits of the Elongin (SIII) complex. Thereafter, EloB and EloC were found to be components of Cul-E3 complexes, contributing to proteasomal degradation of specific substrates. CBF-β is a newly identified key regulator of Vif function, and more information is needed to further clarify its regulatory mechanism. Here, we comprehensively investigated the functions of EloB (together with EloC) in the Vif-CBF-β-Cul5 E3 ligase complex.ResultsThe results revealed that: (1) EloB (and EloC) positively affected the recruitment of CBF-β to Vif. Both knockdown of endogenous EloB and over-expression of its mutant with a 34-residue deletion in the COOH-terminal tail (EloBΔC34/EBΔC34) impaired the Vif-CBF-β interaction. (2) Introduction of both the Vif SLQ → AAA mutant (VifΔSLQ, which dramatically impairs Vif-EloB-EloC binding) and the Vif PPL → AAA mutant (VifΔPPL, which is thought to reduce Vif-EloB binding) could reduce CBF-β binding. (3) EloB-EloC but not CBF-β could greatly enhance the folding of full-length Vif in Escherichia coli. (4) The over-expression of EloB or the N-terminal ubiquitin-like (UbL) domain of EloB could significantly improve the stability of Vif/VifΔSLQ/VifΔPPL through the region between residues 9 and 14.ConclusionOur results indicate that the Vif interaction with EloB-EloC may contribute to recruitment of CBF-β to Vif, demonstrating that the EloB C-teminus may play a role in improving Vif function and that the over-expression of EloB results in Vif stabilization.


PLOS ONE | 2011

Polarity Changes in the Transmembrane Domain Core of HIV-1 Vpu Inhibits Its Anti-Tetherin Activity

Mingyu Lv; Jiawen Wang; Xiaodan Wang; Tao Zuo; Yingzi Zhu; Wei Kong; Xianghui Yu

Tetherin (BST-2/CD317) is an interferon-inducible antiviral protein that restricts the release of enveloped viruses from infected cells. The HIV-1 accessory protein Vpu can efficiently antagonize this restriction. In this study, we analyzed mutations of the transmembrane (TM) domain of Vpu, including deletions and substitutions, to delineate amino acids important for HIV-1 viral particle release and in interactions with tetherin. The mutants had similar subcellular localization patterns with that of wild-type Vpu and were functional with respect to CD4 downregulation. We showed that the hydrophobic binding surface for tetherin lies in the core of the Vpu TM domain. Three consecutive hydrophobic isoleucine residues in the middle region of the Vpu TM domain, I15, I16 and I17, were important for stabilizing the tetherin binding interface and determining its sensitivity to tetherin. Changing the polarity of the amino acids at these positions resulted in severe impairment of Vpu-induced tetherin targeting and antagonism. Taken together, these data reveal a model of specific hydrophobic interactions between Vpu and tetherin, which can be potentially targeted in the development of novel anti-HIV-1 drugs.


Retrovirology | 2014

Role of cullin-elonginB-elonginC E3 complex in bovine immunodeficiency virus and maedi-visna virus Vif-mediated degradation of host A3Z2-Z3 proteins

Jingyao Zhang; Jiaxin Wu; Weiran Wang; Hui Wu; Bin Yu; Jiawen Wang; Mingyu Lv; Xiaodan Wang; Haihong Zhang; Wei Kong; Xianghui Yu

BackgroundAll lentiviruses except equine infectious anemia virus (EIVA) antagonize antiviral family APOBEC3 (A3) proteins of the host through viral Vif proteins. The mechanism by which Vif of human, simian or feline immunodeficiency viruses (HIV/SIV/FIV) suppresses the corresponding host A3s has been studied extensively.ResultsHere, we determined that bovine immunodeficiency virus (BIV) and maedi-visna virus (MVV) Vif proteins utilize the Cullin (Cul)-ElonginB (EloB)-ElonginC (EloC) complex (BIV Vif recruits Cul2, while MVV Vif recruits Cul5) to degrade Bos taurus (bt)A3Z2-Z3 and Ovis aries (oa)A3Z2-Z3, respectively, via a proteasome-dependent but a CBF-β-independent pathway. Mutation of the BC box in BIV and MVV Vif, C-terminal hydrophilic replacement of btEloC and oaEloC and dominant-negative mutants of btCul2 and oaCul5 could disrupt the activity of BIV and MVV Vif, respectively. While the membrane-permeable zinc chelator TPEN could block BIV Vif-mediated degradation of btA3Z2-Z3, it had minimal effects on oaA3Z2-Z3 degradation induced by MVV Vif, indicating that Zn is important for the activity of BIV Vif but not MVV Vif. Furthermore, we identified a previously unreported zinc binding loop [C-x1-C-x1-H-x19-C] in the BIV Vif upstream BC box which is critical for its degradation activity.ConclusionsA novel zinc binding loop was identified in the BIV Vif protein that is important for the E3 ubiquination activity, suggesting that the degradation of btA3Z2-Z3 by BIV and that of oaA3Z2-Z3 by MVV Vif may need host factors other than CBF-β.


FEBS Letters | 2013

Overexpression of inactive tetherin delGPI mutant inhibits HIV-1 Vpu-mediated antagonism of endogenous tetherin

Mingyu Lv; Jiawen Wang; Yingzi Zhu; Xiaodan Wang; Tao Zuo; Donglai Liu; Jingyao Zhang; Jiaxin Wu; Haihong Zhang; Wei Kong; Xianghui Yu

Vpu and etherin colocalize by fluorescence (View interaction) Tetherin physically interacts with Vpu by anti tag coimmunoprecipitation (View interaction)


PLOS ONE | 2014

Epitope Tags beside the N-Terminal Cytoplasmic Tail of Human BST-2 Alter Its Intracellular Trafficking and HIV-1 Restriction

Mingyu Lv; Jiawen Wang; Jingyao Zhang; Biao Zhang; Xiaodan Wang; Yingzi Zhu; Tao Zuo; Donglai Liu; Xiaojun Li; Jiaxin Wu; Haihong Zhang; Bin Yu; Hui Wu; Xinghong Zhao; Wei Kong; Xianghui Yu

BST-2 blocks the particle release of various enveloped viruses including HIV-1, and this antiviral activity is dependent on the topological arrangement of its four structural domains. Several functions of the cytoplasmic tail (CT) of BST-2 have been previously discussed, but the exact role of this domain remains to be clearly defined. In this study, we investigated the impact of truncation and commonly-used tags addition into the CT region of human BST-2 on its intracellular trafficking and signaling as well as its anti-HIV-1 function. The CT-truncated BST-2 exhibited potent inhibition on Vpu-defective HIV-1 and even wild-type HIV-1. However, the N-terminal HA-tagged CT-truncated BST-2 retained little antiviral activity and dramatically differed from its original protein in the cell surface level and intracellular localization. Further, we showed that the replacement of the CT domain with a hydrophobic tag altered BST-2 function possibly by preventing its normal vesicular trafficking. Notably, we demonstrated that a positive charged motif “KRXK” in the conjunctive region between the cytotail and the transmembrane domain which is conserved in primate BST-2 is important for the protein trafficking and the antiviral function. These results suggest that although the CT of BST-2 is not essential for its antiviral activity, the composition of residues in this region may play important roles in its normal trafficking which subsequently affected its function. These observations provide additional implications for the structure-function model of BST-2.


PLOS ONE | 2015

Viral Restriction Activity of Feline BST2 Is Independent of Its N-Glycosylation and Induction of NF-κB Activation.

Weiran Wang; Jiawen Wang; Meng Qu; Xiaojun Li; Jingyao Zhang; Haihong Zhang; Jiaxin Wu; Bin Yu; Hui Wu; Wei Kong; Xianghui Yu

BST2 (CD317, tetherin, HM1.24) is an interferon-inducible transmembrane protein which can directly inhibit the release of enveloped virus particles from infected cells, and its anti-viral activity is reported to be related to the specific topological arrangement of its four structural domains. The N-terminal cytoplasmic tail of feline BST2 (fBST2) is characterized by a shorter N-terminal region compared to those of other known homologs. In this study, we investigated the functional impact of modifying the cytoplasmic tail region of fBST2 and its molecular mechanism. The fBST2 protein with the addition of a peptide at the N-terminus retained anti-release activity against human immunodeficiency virus type-1 and pseudovirus based on feline immunodeficiency virus at a weaker level compared with the wild-type fBST2. However, the fBST2 protein with addition of a peptide internally in the ectodomain proximal to the GPI anchor still retained its anti-viral activity well. Notably, the N-glycosylation state and the cell surface level of the N-terminally modified variants were unlike those of the wild-type protein, while no difference was observed in their intracellular localizations. However, in contrast to human BST2, the wild-type fBST2 did not show the ability to activate NF-κB. Consistent with previous reports, our findings showed that adding a peptide in the cytoplasmic tail region of fBST2 may influence its anti-viral activity. The shorter N-terminal cytoplasmic region of fBST2 compared with human BST2 did not apparently affect its anti-viral activity, which is independent of its N-glycosylation and ability to activate NF-κB.


Protein Expression and Purification | 2013

Purification of eukaryotic tetherin/Vpu proteins and detection of their interaction by ELISA.

Mingyu Lv; Yingzi Zhu; Jiawen Wang; Haihong Zhang; Xiaodan Wang; Tao Zuo; Donglai Liu; Jingyao Zhang; Jiaxin Wu; Wei Kong; Xianghui Yu

Tetherin/BST-2/CD317 inhibits HIV-1 release from infected cells, while HIV-1 Vpu efficiently antagonizes tetherin based on intermolecular interactions between the transmembrane domains of each protein. In this study, we successfully partially purified His-tagged tetherin with a glycophosphatidylinositol deletion (delGPI) and His-tagged full-length Vpu from transiently transfected 293T cells using affinity chromatography. The in vitro interaction between these purified proteins was observed by a pull-down assay and ELISA. Detection of the Vpu/tetherin interaction by ELISA is a novel approach that would be advantageous for inhibitor screening in vitro. Successful co-purification of the tetherin/Vpu complex also provides a basis for further structural studies.


Gene | 2018

Autoubiquitination of feline E3 ubiquitin ligase BCA2

Weiran Wang; Meng Qu; Jiawen Wang; Xin Zhang; Haihong Zhang; Jiaxin Wu; Bin Yu; Hui Wu; Wei Kong; Xianghui Yu

BCA2/RNF115/Rabring7 is a RING type E3 ubiquitin ligase that is overexpressed in human breast tumors and is important for regulating breast cancer cell migration. In the present investigation, feline BCA2 (fBCA2) was identified and characterized. Compared with its human counterpart, the fBCA2 cDNA was confirmed to be 918 base pairs in length showing 92.6% consensus and identity positions, encoding a protein of 305 amino acids with 96.7% consensus and 93.1% identity positions. The fBCA2 protein contains a RING domain at the C-terminus, which was found to be essential for its autoubiquitination.

Collaboration


Dive into the Jiawen Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge