Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gideon Bollag is active.

Publication


Featured researches published by Gideon Bollag.


Nature | 2010

Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF -mutant melanoma

Gideon Bollag; Peter Hirth; James H. Tsai; Jiazhong Zhang; Prabha N. Ibrahim; Hanna Cho; Wayne Spevak; Chao Zhang; Ying Zhang; Gaston Habets; Elizabeth A. Burton; Bernice Wong; Garson Tsang; Brian L. West; Ben Powell; Rafe Shellooe; Adhirai Marimuthu; Hoa Nguyen; Kam Y. J. Zhang; Dean R. Artis; Joseph Schlessinger; Fei Su; Brian Higgins; Raman Mahadevan Iyer; Kurt D'Andrea; Astrid Koehler; Michael Stumm; Paul S. Lin; Richard J. Lee; Joseph F. Grippo

B-RAF is the most frequently mutated protein kinase in human cancers. The finding that oncogenic mutations in BRAF are common in melanoma, followed by the demonstration that these tumours are dependent on the RAF/MEK/ERK pathway, offered hope that inhibition of B-RAF kinase activity could benefit melanoma patients. Herein, we describe the structure-guided discovery of PLX4032 (RG7204), a potent inhibitor of oncogenic B-RAF kinase activity. Preclinical experiments demonstrated that PLX4032 selectively blocked the RAF/MEK/ERK pathway in BRAF mutant cells and caused regression of BRAF mutant xenografts. Toxicology studies confirmed a wide safety margin consistent with the high degree of selectivity, enabling Phase 1 clinical trials using a crystalline formulation of PLX4032 (ref. 5). In a subset of melanoma patients, pathway inhibition was monitored in paired biopsy specimens collected before treatment initiation and following two weeks of treatment. This analysis revealed substantial inhibition of ERK phosphorylation, yet clinical evaluation did not show tumour regressions. At higher drug exposures afforded by a new amorphous drug formulation, greater than 80% inhibition of ERK phosphorylation in the tumours of patients correlated with clinical response. Indeed, the Phase 1 clinical data revealed a remarkably high 81% response rate in metastatic melanoma patients treated at an oral dose of 960 mg twice daily. These data demonstrate that BRAF-mutant melanomas are highly dependent on B-RAF kinase activity.


Nature | 2010

RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF

Poulikos I. Poulikakos; Chao Zhang; Gideon Bollag; Kevan M. Shokat; Neal Rosen

Tumours with mutant BRAF are dependent on the RAF–MEK–ERK signalling pathway for their growth. We found that ATP-competitive RAF inhibitors inhibit ERK signalling in cells with mutant BRAF, but unexpectedly enhance signalling in cells with wild-type BRAF. Here we demonstrate the mechanistic basis for these findings. We used chemical genetic methods to show that drug-mediated transactivation of RAF dimers is responsible for paradoxical activation of the enzyme by inhibitors. Induction of ERK signalling requires direct binding of the drug to the ATP-binding site of one kinase of the dimer and is dependent on RAS activity. Drug binding to one member of RAF homodimers (CRAF–CRAF) or heterodimers (CRAF–BRAF) inhibits one protomer, but results in transactivation of the drug-free protomer. In BRAF(V600E) tumours, RAS is not activated, thus transactivation is minimal and ERK signalling is inhibited in cells exposed to RAF inhibitors. These results indicate that RAF inhibitors will be effective in tumours in which BRAF is mutated. Furthermore, because RAF inhibitors do not inhibit ERK signalling in other cells, the model predicts that they would have a higher therapeutic index and greater antitumour activity than mitogen-activated protein kinase (MEK) inhibitors, but could also cause toxicity due to MEK/ERK activation. These predictions have been borne out in a recent clinical trial of the RAF inhibitor PLX4032 (refs 4, 5). The model indicates that promotion of RAF dimerization by elevation of wild-type RAF expression or RAS activity could lead to drug resistance in mutant BRAF tumours. In agreement with this prediction, RAF inhibitors do not inhibit ERK signalling in cells that coexpress BRAF(V600E) and mutant RAS.


Nature Reviews Cancer | 2007

Hyperactive Ras in developmental disorders and cancer

Suzanne Schubbert; Kevin Shannon; Gideon Bollag

Ras genes are the most common targets for somatic gain-of-function mutations in human cancer. Recently, germline mutations that affect components of the Ras–Raf–mitogen-activated and extracellular-signal regulated kinase kinase (MEK)–extracellular signal-regulated kinase (ERK) pathway were shown to cause several developmental disorders, including Noonan, Costello and cardio-facio-cutaneous syndromes. Many of these mutant alleles encode proteins with aberrant biochemical and functional properties. Here we will discuss the implications of germline mutations in the Ras–Raf–MEK–ERK pathway for understanding normal developmental processes and cancer pathogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity.

James H. Tsai; John T. Lee; Weiru Wang; Jiazhong Zhang; Hanna Cho; Shumeye Mamo; Ryan Bremer; Sam Gillette; Jun Kong; Nikolas K. Haass; Katrin Sproesser; Ling Li; Keiran S.M. Smalley; Daniel Fong; Yong-Liang Zhu; Adhirai Marimuthu; Hoa Nguyen; Billy Lam; Jennifer Liu; Ivana Cheung; Julie Rice; Yoshihisa Suzuki; Catherine Luu; Calvin Settachatgul; Rafe Shellooe; John Cantwell; Sung-Hou Kim; Joseph Schlessinger; Kam Y. J. Zhang; Brian L. West

BRAFV600E is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting “active” protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-RafV600E with an IC50 of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-RafV600E kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-RafV600E-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-RafV600E-positive cells. In B-RafV600E-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-RafV600E-driven tumors.


The New England Journal of Medicine | 2012

RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors.

Fei Su; Amaya Viros; Carla Milagre; Kerstin Trunzer; Gideon Bollag; Olivia Spleiss; Jorge S. Reis-Filho; Xiangju Kong; Richard C. Koya; Keith T. Flaherty; Paul B. Chapman; Min Jung Kim; Robert Hayward; Matthew Martin; Hong Yang; Qiongqing Wang; Holly Hilton; Julie S. Hang; Johannes Noe; Maryou B. Lambros; Felipe C. Geyer; Nathalie Dhomen; Ion Niculescu-Duvaz; Alfonso Zambon; Dan Niculescu-Duvaz; Natasha Preece; Lidia Robert; Nicholas Otte; Stephen Mok; Damien Kee

BACKGROUND Cutaneous squamous-cell carcinomas and keratoacanthomas are common findings in patients treated with BRAF inhibitors. METHODS We performed a molecular analysis to identify oncogenic mutations (HRAS, KRAS, NRAS, CDKN2A, and TP53) in the lesions from patients treated with the BRAF inhibitor vemurafenib. An analysis of an independent validation set and functional studies with BRAF inhibitors in the presence of the prevalent RAS mutation was also performed. RESULTS Among 21 tumor samples, 13 had RAS mutations (12 in HRAS). In a validation set of 14 samples, 8 had RAS mutations (4 in HRAS). Thus, 60% (21 of 35) of the specimens harbored RAS mutations, the most prevalent being HRAS Q61L. Increased proliferation of HRAS Q61L-mutant cell lines exposed to vemurafenib was associated with mitogen-activated protein kinase (MAPK)-pathway signaling and activation of ERK-mediated transcription. In a mouse model of HRAS Q61L-mediated skin carcinogenesis, the vemurafenib analogue PLX4720 was not an initiator or a promoter of carcinogenesis but accelerated growth of the lesions harboring HRAS mutations, and this growth was blocked by concomitant treatment with a MEK inhibitor. CONCLUSIONS Mutations in RAS, particularly HRAS, are frequent in cutaneous squamous-cell carcinomas and keratoacanthomas that develop in patients treated with vemurafenib. The molecular mechanism is consistent with the paradoxical activation of MAPK signaling and leads to accelerated growth of these lesions. (Funded by Hoffmann-La Roche and others; ClinicalTrials.gov numbers, NCT00405587, NCT00949702, NCT01001299, and NCT01006980.).


Cell | 1990

The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21

George A. Martin; David Viskoohil; Gideon Bollag; Peter C. McCabe; Walter J. Crosier; Heinz Haubruck; Leah B. Conroy; Robin Clark; P. O'Connell; Richard M. Cawthon; Michael A. Innis; Frank McCormick

The neurofibromatosis type 1 (NF1) protein contains a region of significant sequence similarity to ras p21 GTPase-activating protein (GAP) and the yeast IRA1 gene product. A fragment of NF1 cDNA encoding the GAP-related domain (NF1 GRD) was expressed, immunoaffinity purified, and assayed for effects on N-ras p21 GTPase activity. The GTPase of wild-type ras p21 was stimulated by NF1 GRD, but oncogenic mutants of ras p21 (Asp-12 and Val-12) were unaffected, and the GTPase of an effector mutant (Ala-38) was only weakly stimulated. NF1 GRD also down-regulated RAS function in S. cerevisiae. The affinity of NF1 GRD for ras p21 was estimated to be 250 nM: this is more than 20-fold higher than the affinity of GAP for ras p21. However, its specific activity was about 30 times lower. These kinetic measurements suggest that NF1 may be a significant regulator of ras p21 activity, particularly at low ras p21 concentrations.


Nature Genetics | 2006

Germline KRAS mutations cause Noonan syndrome

Suzanne Schubbert; Martin Zenker; Sara L. Rowe; Silke Böll; Cornelia Klein; Gideon Bollag; Ineke van der Burgt; Luciana Musante; Vera M. Kalscheuer; Lars-Erik Wehner; Hoa Nguyen; Brian L. West; Kam Y. J. Zhang; Erik A. Sistermans; Anita Rauch; Charlotte M. Niemeyer; Kevin Shannon; Christian P. Kratz

Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects. Heterozygous mutations in PTPN11, which encodes SHP-2, cause ∼50% of cases of Noonan syndrome. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream effectors, including Ras. We discovered de novo germline KRAS mutations that introduce V14I, T58I or D153V amino acid substitutions in five individuals with Noonan syndrome and a P34R alteration in a individual with cardio-facio-cutaneous syndrome (MIM 115150), which has overlapping features with Noonan syndrome. Recombinant V14I and T58I K-Ras proteins show defective intrinsic GTP hydrolysis and impaired responsiveness to GTPase activating proteins, render primary hematopoietic progenitors hypersensitive to growth factors and deregulate signal transduction in a cell lineage–specific manner. These studies establish germline KRAS mutations as a cause of human disease and infer that the constellation of developmental abnormalities seen in Noonan syndrome spectrum is, in large part, due to hyperactive Ras.


Cell | 1992

Somatic mutations in the neurofibromatosis 1 gene in human tumors

Ying Li; Gideon Bollag; Robin Clark; Jeff Stevens; Leah B. Conroy; Daniel W. Fults; Kenneth Ward; Eitan Friedman; Wade S. Samowitz; Margaret Robertson; Paige Bradley; Frank McCormick; Ray White; Richard M. Cawthon

The neurofibromatosis 1 (NF1) gene product, neurofibromin, contains a GTPase-activating protein (GAP)-related domain, or NF1 GRD, that is able to down-regulate p21ras by stimulating its intrinsic GTPase. Since p21ras.GTP is a major regulator of growth and differentiation, mutant neurofibromins resulting from somatic mutations in the NF1 gene might interfere with ras signaling pathways and contribute to the development of tumors. We describe an amino acid substitution in the NF1 GRD, altering Lys-1423, that has occurred in three tumor types: colon adenocarcinoma, myelodysplastic syndrome, and anaplastic astrocytoma, and in one family with neurofibromatosis 1. The GAP activity of the mutant NF1 GRD is 200- to 400-fold lower than that of wild type, whereas binding affinity is unaffected. Thus, germline mutations in NF1 that cause neurofibromatosis 1 can also occur in somatic cells and contribute to the development of sporadic tumors, including tumors not associated with neurofibromatosis 1.


Nature Reviews Drug Discovery | 2012

Vemurafenib: the first drug approved for BRAF -mutant cancer

Gideon Bollag; James H. Tsai; Jiazhong Zhang; Chao Zhang; Prabha N. Ibrahim; Keith Nolop; Peter Hirth

The identification of driver oncogenes has provided important targets for drugs that can change the landscape of cancer therapies. One such example is the BRAF oncogene, which is found in about half of all melanomas as well as several other cancers. As a druggable kinase, oncogenic BRAF has become a crucial target of small-molecule drug discovery efforts. Following a rapid clinical development path, vemurafenib (Zelboraf; Plexxikon/Roche) was approved for the treatment of BRAF-mutated metastatic melanoma in the United States in August 2011 and the European Union in February 2012. This Review describes the underlying biology of BRAF, the technology used to identify vemurafenib and its clinical development milestones, along with future prospects based on lessons learned during its development.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner

Eric W. Joseph; Christine A. Pratilas; Poulikos I. Poulikakos; Madhavi Tadi; Weiqing Wang; Barry S. Taylor; Ensar Halilovic; Yogindra Persaud; Feng Xing; Agnes Viale; James H. Tsai; Paul B. Chapman; Gideon Bollag; David B. Solit; Neal Rosen

Tumors with mutant BRAF and some with mutant RAS are dependent upon ERK signaling for proliferation, and their growth is suppressed by MAPK/ERK kinase (MEK) inhibitors. In contrast, tumor cells with human EGF receptor (HER) kinase activation proliferate in a MEK-independent manner. These findings have led to the development of RAF and MEK inhibitors as anticancer agents. Like MEK inhibitors, the RAF inhibitor PLX4032 inhibits the proliferation of BRAFV600E tumor cells but not that of HER kinase-dependent tumors. However, tumors with RAS mutation that are sensitive to MEK inhibition are insensitive to PLX4032. MEK inhibitors inhibit ERK phosphorylation in all normal and tumor cells, whereas PLX4032 inhibits ERK signaling only in tumor cells expressing BRAFV600E. In contrast, the drug activates MEK and ERK phosphorylation in cells with wild-type BRAF. In BRAFV600E tumor cells, MEK and RAF inhibitors affect the expression of a common set of genes. PLX4032 inhibits ERK signaling output in mutant BRAF cells, whereas it transiently activates the expression of these genes in tumor cells with wild-type RAF. Thus, PLX4032 inhibits ERK signaling output in a mutant BRAF-selective manner. These data explain why the drug selectively inhibits the growth of mutant BRAF tumors and suggest that it will not cause toxicity resulting from the inhibition of ERK signaling in normal cells. This selectivity may lead to a broader therapeutic index and help explain the greater antitumor activity observed with this drug than with MEK inhibitors.

Collaboration


Dive into the Gideon Bollag's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin Shannon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge