Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yirong Zhang is active.

Publication


Featured researches published by Yirong Zhang.


BMC Genomics | 2011

Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize

Hongyan Xing; Ramesh N Pudake; Ganggang Guo; Guofang Xing; Zhaorong Hu; Yirong Zhang; Qixin Sun; Zhongfu Ni

BackgroundAuxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs) are the transcription factors that regulate the expression of auxin responsive genes. The ARF genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the ARF gene family from maize (ZmARF genes) has not been characterized in detail.ResultsIn this study, 31 maize (Zea mays L.) genes that encode ARF proteins were identified in maize genome. It was shown that maize ARF genes fall into related sister pairs and chromosomal mapping revealed that duplication of ZmARFs was associated with the chromosomal block duplications. As expected, duplication of some ZmARFs showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 ZmARF genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 ZmARF genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (ZmARF3, 9, 16, 18, 22 and 30). The expressions of maize ARF genes are responsive to exogenous auxin treatment. Dynamic expression patterns of ZmARF genes were observed in different stages of embryo development.ConclusionsMaize ARF gene family is expanded (31 genes) as compared to Arabidopsis (23 genes) and rice (25 genes). The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of ZmARF genes in embryo at different stages were detected which suggest that maize ARF genes may be involved in seed development and germination.


PLOS ONE | 2013

Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination.

Baojian Guo; Yanhong Chen; Guiping Zhang; Jiewen Xing; Zhaorong Hu; Wan-Jun Feng; Yingyin Yao; Huiru Peng; Jinkun Du; Yirong Zhang; Zhongfu Ni; Qixin Sun

In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed. In total, the number of differentially expressed protein spots between hybrid and its parental lines in dry and 24 h imbibed seed embryos were 134 and 191, respectively, among which 47.01% (63/134) and 34.55% (66/191) protein spots displayed nonadditively expressed pattern. Remarkably, 54.55% of nonadditively accumulated proteins in 24 h imbibed seed embryos displayed above or equal to the level of the higher parent patterns. Moreover, 155 differentially expressed protein spots were identified, which were grouped into eight functional classes, including transcription & translation, energy & metabolism, signal transduction, disease & defense, storage protein, transposable element, cell growth & division and unclassified proteins. In addition, one of the upregulated proteins in F1 hybrids was ZmACT2, a homolog of Arabidopsis thaliana ACT7 (AtACT7). Expressing ZmACT2 driven by the AtACT7 promoter partially complemented the low germination phenotype in the Atact7 mutant. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of proteins, and it is concluded that the altered pattern of gene expression at translational level in the hybrid may be responsible for the observed heterosis.


Gene | 2011

Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize.

Jian Song; Baojian Guo; Fangwei Song; Huiru Peng; Yingyin Yao; Yirong Zhang; Qixin Sun; Zhongfu Ni

Gibberellin (GA) is an essential phytohormone that controls many aspects of plant development. To enhance our understanding of GA metabolism in maize, we intensively screened and identified 27 candidate genes encoding the seven GA metabolic enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox), using all available public maize databases. The results indicate that maize genome contains three CPS, four KS, two KO and one KAO genes, and most of them are arranged separately on the maize genome, which differs from that in rice. In addition, the enzymes catalyzing the later steps (ZmGA20ox, ZmGA3ox and ZmGA2ox) are also encoded by gene families in maize, but GA3ox enzyme is likely to be encoded by single gene. Expression profiling analysis exhibited that transcripts of 15 GA metabolic genes could be detected during maize seed germination, which provides further evidence for the notion that increased synthesis of active GA in the embryo is required for triggering germination events. Moreover, a variety of temporal genes expression patterns of GA metabolic genes were detected, which revealed the complexity of underlying mechanism for GA regulated seed germination.


Plant Science | 2016

Ectopic expression of a maize hybrid up-regulated gene, ErbB-3 binding Protein 1 (ZmEBP1), increases organ size by promoting cell proliferation in Arabidopsis

Tianya Wang; Zhipeng Sui; Xinye Liu; Yangyang Li; Hongjian Li; Jiewen Xing; Fangwei Song; Yirong Zhang; Qixin Sun; Zhongfu Ni

The alteration of gene expression in hybrids may be an important factor promoting phenotypic variation and plasticity. To provide insight into the underlying molecular basis of maize heterosis in terms of the kernel number per ear, we established DGE profiles for the immature ears of maize hybrid Zong3/87-1 and its parental lines at the floral organ differentiation stage. Among 4,337 identified differentially expressed genes, 4,021 (92%) exhibited nonadditive expression patterns in the hybrid. Notably, the maize homolog of Arabidopsis EBP1, designated ZmEBP1, displayed an overdominant expression pattern in the Zong3/87-1 hybrid. Moreover, the results of qRT-PCR revealed that the ZmEBP1 gene was upregulated in the immature ears of the reciprocal hybrids Zong3/87-1 and 87-1/Zong3 at different developmental stages. Additionally, ectopic expression of ZmEBP1 in Arabidopsis increased organ size, which was mainly attributed to an increase in cell numbers, rather than cell size. Considering all of these findings together, we speculate that upregulation of ZmEBP1 in maize hybrids may accelerate cell proliferation and promote ear development.


Gene | 2012

A novel histidine kinase gene, ZmHK9, mediate drought tolerance through the regulation of stomatal development in Arabidopsis.

Bo Wang; Baojian Guo; Xiaodong Xie; Yingyin Yao; Huiru Peng; Chaojie Xie; Yirong Zhang; Qixin Sun; Zhongfu Ni

Plants have developed complex signaling networks to regulate biochemical and physiological acclimation, environmental signals were perceived and transmitted to cellular machinery to activate adaptive responses. Here, a novel drought responsive histidine kinase gene was identified and designated as ZmHK9. Under normal conditions, ZmHK9 was predominantly expressed in roots, and the roots of ZmHK9-OX transgenic lines are markedly hypersensitive to ABA and ethylene, as compare to wild type. Consistent with its expression induced by PEG and exogenous ABA treatment, promoter sequence of this gene possessed drought and ABA responsive element. Moreover, the transgenic plants were much less affected by drought stress and recovered quickly after rewatering, stomatal complex size and stomatal density in the transgenic plants are significantly smaller and lower than those of the wild-type plants. In addition, ABA induced stomatal closure and the stomatal aperture of ZmHK9-OX lines was smaller than that of wild type. Collectively, it can be concluded that ZmHK9 regulates root elongation, stomatal development and drought tolerance through ABA dependent signaling pathway in Arabidopsis.


BMC Genetics | 2017

Quantitative trait locus analysis of heterosis for plant height and ear height in an elite maize hybrid zhengdan 958 by design III

Hongjian Li; Qingsong Yang; Nannan Fan; Ming Zhang; Huijie Zhai; Zhongfu Ni; Yirong Zhang

BackgroundPlant height (PH) and ear height (EH) are two important agronomic traits in maize selection breeding. F1 hybrid exhibit significant heterosis for PH and EH as compared to their parental inbred lines. To understand the genetic basis of heterosis controlling PH and EH, we conducted quantitative trait locus (QTL) analysis using a recombinant inbreed line (RIL) based design III population derived from the elite maize hybrid Zhengdan 958 in five environments.ResultsA total of 14 environmentally stable QTLs were identified, and the number of QTLs for Z1 and Z2 populations was six and eight, respectively. Notably, all the eight environmentally stable QTLs for Z2 were characterized by overdominance effect (OD), suggesting that overdominant QTLs were the most important contributors to heterosis for PH and EH. Furthermore, 14 environmentally stable QTLs were anchored on six genomic regions, among which four are trait-specific QTLs, suggesting that the genetic basis for PH and EH is partially different. Additionally, qPH.A-1.3, modifying about 10 centimeters of PH, was further validated in backcross populations.ConclusionsThe genetic basis for PH and EH is partially different, and overdominant QTLs are important factors for heterosis of PH and EH. A major QTL qPH.A-1.3 may be a desired target for genetic improvement of maize plant height.


Molecular Genetics and Genomics | 2014

Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.)

Bo Wang; Yanhong Chen; Baojian Guo; Muhammad Rezaul Kabir; Yingyin Yao; Huiru Peng; Chaojie Xie; Yirong Zhang; Qixin Sun; Zhongfu Ni

Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.


Frontiers in Plant Science | 2017

Identification of Heterosis-Associated Stable QTLs for Ear-Weight-Related Traits in an Elite Maize Hybrid Zhengdan 958 by Design III

Hongjian Li; Qingsong Yang; Lulu Gao; Ming Zhang; Zhongfu Ni; Yirong Zhang

Heterosis plays a decisive role in maize production worldwide, but its genetic basis remains unclear. In this study, we explored heterosis for ear-weight (EW)-related traits using a North Carolina Experiment III design (Design III) population derived from the elite maize hybrid Zhengdan 958. Quantitative trait loci (QTL) analysis was conducted based on phenotypic data collected from five environments using a high-density linkage map that consisted of 905 single nucleotide polymorphisms (SNP). A total of 38 environmentally stable QTLs were detected, and the numbers for the Z1 and Z2 populations were 18 and 20, respectively. All environmentally stable QTLs for Z2 were characterized by the overdominance effect (OD), which indicated that overdominance was one of the most important contributors to the heterosis of EW-related traits. Consistent with the significant positive correlations between EW-related traits, 9 genomic regions with overlapped QTLs for different traits were found and were located on chromosomes 1 (1), 3 (2), 4 (3), 7 (1), 8 (1), and 9 (1). Compared to previous reports, we found that the genomic regions for heterosis were not always congruent between different hybrids, which suggested that the combination of heterotic loci in different hybrids was genotype-dependent. Collectively, these data provided further evidence that the potential utilization of QTLs for heterosis may be feasible by pyramiding if we treat the QTLs as inherited units.


Plant Journal | 2016

Histone acetyltransferase general control non-repressed protein 5 (GCN5) affects the fatty acid composition of Arabidopsis thaliana seeds by acetylating fatty acid desaturase3 (FAD3).

Tianya Wang; Jiewen Xing; Xinye Liu; Zhenshan Liu; Yingyin Yao; Zhaorong Hu; Huiru Peng; Mingming Xin; Dao-Xiu Zhou; Yirong Zhang; Zhongfu Ni

Seed oils are important natural resources used in the processing and preparation of food. Histone modifications represent key epigenetic mechanisms that regulate gene expression, plant growth and development. However, histone modification events during fatty acid (FA) biosynthesis are not well understood. Here, we demonstrate that a mutation of the histone acetyltransferase GCN5 can decrease the ratio of α-linolenic acid (ALA) to linoleic acid (LA) in seed oil. Using RNA-Seq and ChIP assays, we identified FAD3, LACS2, LPP3 and PLAIIIβ as the targets of GCN5. Notably, the GCN5-dependent H3K9/14 acetylation of FAD3 determined the expression levels of FAD3 in Arabidopsis thaliana seeds, and the ratio of ALA/LA in the gcn5 mutant was rescued to the wild-type levels through the overexpression of FAD3. The results of this study indicated that GCN5 modulated FA biosynthesis by affecting the acetylation levels of FAD3. We provide evidence that histone acetylation is involved in FA biosynthesis in Arabidopsis seeds and might contribute to the optimization of the nutritional structure of edible oils through epigenetic engineering.


Journal of Experimental Botany | 2016

Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion

Yangyang Li; Cheng Wang; Xinye Liu; Jian Song; Hongjian Li; Zhipeng Sui; Ming Zhang; Shuang Fang; Jinfang Chu; Mingming Xin; Chaojie Xie; Yirong Zhang; Qixin Sun; Zhongfu Ni

Highlight ZmABA8ox1b-mediated abscisic acid inactivation increases seed germination rate by promoting cell expansion in the maize hybrid B73/Mo17 compared with its parental inbred lines.

Collaboration


Dive into the Yirong Zhang's collaboration.

Top Co-Authors

Avatar

Zhongfu Ni

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qixin Sun

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Huiru Peng

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yingyin Yao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Baojian Guo

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Fangwei Song

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hongjian Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jiewen Xing

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinye Liu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhaorong Hu

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge