Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill M. Brooks is active.

Publication


Featured researches published by Jill M. Brooks.


Journal of Experimental Medicine | 2004

CD8 T Cell Recognition of Endogenously Expressed Epstein-Barr Virus Nuclear Antigen 1

Steven P. Lee; Jill M. Brooks; Hatim Al-Jarrah; Wendy A. Thomas; Tracey A. Haigh; Graham S. Taylor; Sibille Humme; Aloys Schepers; Wolfgang Hammerschmidt; John L. Yates; Alan B. Rickinson; Neil Blake

The Epstein-Barr virus (EBV) nuclear antigen (EBNA)1 contains a glycine-alanine repeat (GAr) domain that appears to protect the antigen from proteasomal breakdown and, as measured in cytotoxicity assays, from major histocompatibility complex (MHC) class I–restricted presentation to CD8+ T cells. This led to the concept of EBNA1 as an immunologically silent protein that although unique in being expressed in all EBV malignancies, could not be exploited as a CD8 target. Here, using CD8+ T cell clones to native EBNA1 epitopes upstream and downstream of the GAr domain and assaying recognition by interferon γ release, we show that the EBNA1 naturally expressed in EBV-transformed lymphoblastoid cell lines (LCLs) is in fact presented to CD8+ T cells via a proteasome/peptide transporter–dependent pathway. Furthermore, LCL recognition by such CD8+ T cells, although slightly lower than seen with paired lines expressing a GAr-deleted EBNA1 protein, leads to strong and specific inhibition of LCL outgrowth in vitro. Endogenously expressed EBNA1 is therefore accessible to the MHC class I pathway despite GAr-mediated stabilization of the mature protein. We infer that EBNA1-specific CD8+ T cells do play a role in control of EBV infection in vivo and might be exploitable in the control of EBV+ malignancies.


Journal of Virology | 2005

CD4+ T-Cell Responses to Epstein-Barr Virus (EBV) Latent-Cycle Antigens and the Recognition of EBV-Transformed Lymphoblastoid Cell Lines

Heather M. Long; Tracey A. Haigh; Nancy H. Gudgeon; Ann M. Leen; Chi Tsang; Jill M. Brooks; Elise Landais; Elisabeth Houssaint; Steven P. Lee; Alan B. Rickinson; Graham S. Taylor

ABSTRACT There is considerable interest in the potential of Epstein-Barr virus (EBV) latent antigen-specific CD4+ T cells to act as direct effectors controlling EBV-induced B lymphoproliferations. Such activity would require direct CD4+ T-cell recognition of latently infected cells through epitopes derived from endogenously expressed viral proteins and presented on the target cell surface in association with HLA class II molecules. It is therefore important to know how often these conditions are met. Here we provide CD4+ epitope maps for four EBV nuclear antigens, EBNA1, -2, -3A, and -3C, and establish CD4+ T-cell clones against 12 representative epitopes. For each epitope we identify the relevant HLA class II restricting allele and determine the efficiency with which epitope-specific effectors recognize the autologous EBV-transformed B-lymphoblastoid cell line (LCL). The level of recognition measured by gamma interferon release was consistent among clones to the same epitope but varied between epitopes, with values ranging from 0 to 35% of the maximum seen against the epitope peptide-loaded LCL. These epitope-specific differences, also apparent in short-term cytotoxicity and longer-term outgrowth assays on LCL targets, did not relate to the identity of the source antigen and could not be explained by the different functional avidities of the CD4+ clones; rather, they appeared to reflect different levels of epitope display at the LCL surface. Thus, while CD4+ T-cell responses are detectable against many epitopes in EBV latent proteins, only a minority of these responses are likely to have therapeutic potential as effectors directly recognizing latently infected target cells.


Annual Review of Immunology | 2015

The Immunology of Epstein-Barr Virus–Induced Disease

Graham S. Taylor; Heather M. Long; Jill M. Brooks; Alan B. Rickinson; Andrew D. Hislop

Epstein-Barr virus (EBV) is usually acquired silently early in life and carried thereafter as an asymptomatic infection of the B lymphoid system. However, many circumstances disturb the delicate EBV-host balance and cause the virus to display its pathogenic potential. Thus, primary infection in adolescence can manifest as infectious mononucleosis (IM), as a fatal illness that magnifies the immunopathology of IM in boys with the X-linked lymphoproliferative disease trait, and as a chronic active disease leading to life-threatening hemophagocytosis in rare cases of T or natural killer (NK) cell infection. Patients with primary immunodeficiencies affecting the NK and/or T cell systems, as well as immunosuppressed transplant recipients, handle EBV infections poorly, and many are at increased risk of virus-driven B-lymphoproliferative disease. By contrast, a range of other EBV-positive malignancies of lymphoid or epithelial origin arise in individuals with seemingly intact immune systems through mechanisms that remain to be understood.


Nature Immunology | 2011

Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes

Jan H. Kessler; Selina Khan; Ulrike Seifert; Sylvie Le Gall; K. Martin Chow; Annette Paschen; Sandra A. Bres-Vloemans; Arnoud H. de Ru; Nadine van Montfoort; Kees L. M. C. Franken; Willemien E. Benckhuijsen; Jill M. Brooks; Thorbald van Hall; Kallol Ray; Arend Mulder; Ilias I.N. Doxiadis; Paul F. van Swieten; Hermen S. Overkleeft; Annik Prat; Birgitta Tomkinson; Jacques Neefjes; Peter M. Kloetzel; David W. Rodgers; Louis B. Hersh; Jan W. Drijfhout; Peter A. van Veelen; Ferry Ossendorp; Cornelis J. M. Melief

Cytotoxic T lymphocytes (CTLs) recognize peptides presented by HLA class I molecules on the cell surface. The C terminus of these CTL epitopes is considered to be produced by the proteasome. Here we demonstrate that the cytosolic endopeptidases nardilysin and thimet oligopeptidase (TOP) complemented proteasome activity. Nardilysin and TOP were required, either together or alone, for the generation of a tumor-specific CTL epitope from PRAME, an immunodominant CTL epitope from Epstein-Barr virus protein EBNA3C, and a clinically important epitope from the melanoma protein MART-1. TOP functioned as C-terminal trimming peptidase in antigen processing, and nardilysin contributed to both the C-terminal and N-terminal generation of CTL epitopes. By broadening the antigenic peptide repertoire, nardilysin and TOP strengthen the immune defense against intracellular pathogens and cancer.


Journal of Immunology | 2000

Immunodominance Among EBV-Derived Epitopes Restricted by HLA-B27 Does Not Correlate with Epitope Abundance in EBV-Transformed B-Lymphoblastoid Cell Lines

Victoria L. Crotzer; Robert E. Christian; Jill M. Brooks; Jeffrey Shabanowitz; Robert E. Settlage; Jarrod A. Marto; Forest M. White; Alan B. Rickinson; Donald F. Hunt; Victor H. Engelhard

Using synthetic peptides, the HLA-B27-restricted CTL response to EBV in asymptomatic virus carriers has been mapped to four epitope regions in EBV latent cycle Ags. One of these peptide-defined epitopes (RRIYDLIEL) tends to be immunodominant and is recognized in the context of all three B27 subtypes studied, B*2702, B*2704, and B*2705. The other peptide-defined epitopes induce responses only in the context of one subtype, the immunogenic combinations being RRARSLSAERY/B*2702, RRRWRRLTV/B*2704, and FRKAQIQGL/B*2705. We used immunoaffinity chromatography to isolate the naturally presented viral peptides associated with these MHC class I molecules on the surface of EBV-transformed B-LCL. Using CTL reconstitution assays in conjunction with mass spectrometry, we established that the naturally processed and presented peptides are identical with the previously identified synthetic sequences. Despite the subtype-specific immunogenicity of three of the four epitopes, all four epitope peptides were found in association with each of the three different HLA-B27 subtypes. Indeed, those peptides that failed to induce a response in the context of a particular HLA-B27 subtype were frequently presented at greater abundance by that subtype than were the immunogenic peptides. Furthermore, among the peptides that did induce a response, immunodominance did not correlate with epitope abundance; in fact the immunodominant RRIYDLIEL epitope was least abundant, being present at less than one copy per cell. The relationship of this unexpected finding to the persistence of EBV is discussed.


Journal of Immunology | 2006

A Role for Intercellular Antigen Transfer in the Recognition of EBV-Transformed B Cell Lines by EBV Nuclear Antigen-Specific CD4+ T Cells

Graham S. Taylor; Heather M. Long; Tracey A. Haigh; Martin Rossel Larsen; Jill M. Brooks; Alan B. Rickinson

The CD4+ T cell response to EBV may have an important role in controlling virus-driven B lymphoproliferation because CD4+ T cell clones to a subset of EBV nuclear Ag (EBNA) epitopes can directly recognize virus-transformed lymphoblastoid cell lines (LCLs) in vitro and inhibit their growth. In this study, we used a panel of EBNA1, 2, 3A, and 3C-specific CD4+ T cell clones to study the route whereby endogenously expressed EBNAs access the HLA class II-presentation pathway. Two sets of results spoke against a direct route of intracellular access. First, none of the clones recognized cognate Ag overexpressed in cells from vaccinia vectors but did recognize Ag fused to an endo/lysosomal targeting sequence. Second, focusing on clones with the strongest LCL recognition that were specific for EBNA2- and EBNA3C-derived epitopes LCL recognition was unaffected by inhibiting autophagy, a postulated route for intracellular Ag delivery into the HLA class II pathway in LCL cells. Subsequently, using these same epitope-specific clones, we found that Ag-negative cells with the appropriate HLA-restricting allele could be efficiently sensitized to CD4+ T cell recognition by cocultivation with Ag-positive donor lines or by exposure to donor line-conditioned culture medium. Sensitization was mediated by a high m.w. antigenic species and required active Ag processing by recipient cells. We infer that intercellular Ag transfer plays a major role in the presentation of EBNA-derived CD4 epitopes by latently infected target cells.


Journal of Virology | 2000

Cytotoxic T-Lymphocyte Responses to a Polymorphic Epstein-Barr Virus Epitope Identify Healthy Carriers with Coresident Viral Strains

Jill M. Brooks; Debbie Croom-Carter; Alison M. Leese; R. J. Tierney; G. Habeshaw; Alan B. Rickinson

ABSTRACT Cytotoxic T-lymphocyte (CTL) responses to Epstein-Barr virus (EBV) tend to focus on a few immunodominant viral epitopes; where these epitope sequences are polymorphic between EBV strains, host CTL specificities should reflect the identity of the resident strain. In studying responses in HLA-B27-positive virus carriers, we identified 2 of 15 individuals who had strong CTL memory to the pan-B27 epitope RRIYDLIEL (RRIY) from nuclear antigen EBNA3C but whose endogenous EBV strain, isolated in vitro, encoded a variant sequence RKIYDLIEL (RKIY) which did not form stable complexes with B27 molecules and which was poorly recognized by RRIY-specific CTLs. To check if such individuals were also carrying an epitope-positive strain (either related to or distinct from the in vitro isolate), we screened DNA from freshly isolated peripheral blood mononuclear cells for amplifiable virus sequences across the EBNA3C epitope, across a different region of EBNA3C with type 1-type 2 sequence divergence, and across a polymorphic region of EBNA1. This showed that one of the unexplained RRIY responders carried two distinct type 1 strains, one with an RKIY and one with an RRIY epitope sequence. The other responder carried an RKIY-positive type 1 strain and a type 2 virus whose epitope sequence of RRIFDLIEL was antigenically cross-reactive with RRIY. Of 15 EBV-seropositive donors analyzed by such assays, 12 appeared to be carrying a single virus strain, one was coinfected with distinct type 1 strains, and two were carrying both type 1 and type 2 viruses. This implies that a small but significant percentage of healthy virus carriers harbor multiple, perhaps sequentially acquired, EBV strains.


PLOS Pathogens | 2009

T Cell Detection of a B-Cell Tropic Virus Infection: Newly- Synthesised versus Mature Viral Proteins as Antigen Sources for CD4 and CD8 Epitope Display

Laura K. Mackay; Heather M. Long; Jill M. Brooks; Graham S. Taylor; Carol S. Leung; Adrienne Chen; Fred Wang; Alan B. Rickinson

Viruses that naturally infect cells expressing both MHC I and MHC II molecules render themselves potentially visible to both CD8+ and CD4+ T cells through the de novo expression of viral antigens. Here we use one such pathogen, the B-lymphotropic Epstein-Barr virus (EBV), to examine the kinetics of these processes in the virally-infected cell, comparing newly synthesised polypeptides versus the mature protein pool as viral antigen sources for MHC I- and MHC II-restricted presentation. EBV-transformed B cell lines were established in which the expression of two cognate EBV antigens, EBNA1 and EBNA3B, could be induced and then completely suppressed by doxycycline-regulation. These cells were used as targets for CD8+ and CD4+ T cell clones to a range of EBNA1 and EBNA3B epitopes. For both antigens, when synthesis was induced, CD8 epitope display rose quickly to near maximum within 24 h, well before steady state levels of mature protein had been reached, whereas CD4 epitope presentation was delayed by 36–48 h and rose only slowly thereafter. When antigen expression was suppressed, despite the persistence of mature protein, CD8 epitope display fell rapidly at rates similar to that seen for the MHC I/epitope half-life in peptide pulse-chase experiments. By contrast, CD4 epitope display persisted for many days and, following peptide stripping, recovered well on cells in the absence of new antigen synthesis. We infer that, in virally-infected MHC I/II-positive cells, newly-synthesised polypeptides are the dominant source of antigen feeding the MHC I pathway, whereas the MHC II pathway is fed by the mature protein pool. Hence, newly-infected cells are rapidly visible only to the CD8 response; by contrast, latent infections, in which viral gene expression has been extinguished yet viral proteins persist, will remain visible to CD4+ T cells.


Journal of Immunology | 2009

Cyclical Expression of EBV Latent Membrane Protein 1 in EBV-Transformed B Cells Underpins Heterogeneity of Epitope Presentation and CD8 + T Cell Recognition

Jill M. Brooks; Steven P. Lee; Alison M. Leese; Wendy A. Thomas; Martin Rowe; Alan B. Rickinson

CD8+ T cells specific for EBV latent cycle epitopes can be reactivated in vitro by stimulating with the autologous EBV-transformed B lymphoblastoid cell line (LCL). The resultant CD8+ clones kill epitope peptide-loaded targets, but frequently do not kill or show only low levels of lysis of the unmanipulated LCL in 5-h cytotoxicity assays. However, they reproducibly show clear LCL recognition in cytokine (IFN-γ) release assays and inhibit LCL outgrowth in long-term coculture assays. We show that this growth inhibition is not mediated by cytokines, but by slow killing detectable in extended cytotoxicity assays. The paradoxical earlier findings reflect the fact that cytokine assays are more sensitive indicators of Ag-specific recognition in situations in which the target population is heterogeneous at the single-cell level in terms of epitope display. Such heterogeneity exists within LCLs with, at any one time, subpopulations showing large differences in sensitivity to T cell detection. These differences are not cell cycle related, but correlate with differing levels of EBV latent membrane protein (LMP)1 expression at the single-cell level. In this study, LMP1 is not itself a CD8+ T cell target, but its expression enhances Ag-processing capacity and HLA class I expression. We propose that LMP1 levels fluctuate cyclically in individual cells and, over time, all cells within a LCL pass through a LMP1high T cell-detectable phase.


PLOS Pathogens | 2016

Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination.

Jill M. Brooks; Heather M. Long; Rose J. Tierney; Claire Shannon-Lowe; Alison M. Leese; Martin Fitzpatrick; Graham S. Taylor; Alan B. Rickinson

Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three “first wave” proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that “first wave” antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design.

Collaboration


Dive into the Jill M. Brooks's collaboration.

Top Co-Authors

Avatar

Alan B. Rickinson

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Graham S. Taylor

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth Murray

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven P. Lee

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Rowe

University of Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge