Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jill Milne is active.

Publication


Featured researches published by Jill Milne.


Cell | 2006

Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha.

Marie Lagouge; Carmen A. Argmann; Zachary Gerhart-Hines; Hamid Meziane; Carles Lerin; Frédéric N. Daussin; Nadia Messadeq; Jill Milne; Philip D. Lambert; Peter J. Elliott; Bernard Geny; Markku Laakso; Pere Puigserver; Johan Auwerx

Diminished mitochondrial oxidative phosphorylation and aerobic capacity are associated with reduced longevity. We tested whether resveratrol (RSV), which is known to extend lifespan, impacts mitochondrial function and metabolic homeostasis. Treatment of mice with RSV significantly increased their aerobic capacity, as evidenced by their increased running time and consumption of oxygen in muscle fibers. RSVs effects were associated with an induction of genes for oxidative phosphorylation and mitochondrial biogenesis and were largely explained by an RSV-mediated decrease in PGC-1alpha acetylation and an increase in PGC-1alpha activity. This mechanism is consistent with RSV being a known activator of the protein deacetylase, SIRT1, and by the lack of effect of RSV in SIRT1(-/-) MEFs. Importantly, RSV treatment protected mice against diet-induced-obesity and insulin resistance. These pharmacological effects of RSV combined with the association of three Sirt1 SNPs and energy homeostasis in Finnish subjects implicates SIRT1 as a key regulator of energy and metabolic homeostasis.


Nature | 2009

AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity

Carles Cantó; Zachary Gerhart-Hines; Jerome N. Feige; Marie Lagouge; Liliana Noriega; Jill Milne; Peter J. Elliott; Pere Puigserver; Johan Auwerx

AMP-activated protein kinase (AMPK) is a metabolic fuel gauge conserved along the evolutionary scale in eukaryotes that senses changes in the intracellular AMP/ATP ratio. Recent evidence indicated an important role for AMPK in the therapeutic benefits of metformin, thiazolidinediones and exercise, which form the cornerstones of the clinical management of type 2 diabetes and associated metabolic disorders. In general, activation of AMPK acts to maintain cellular energy stores, switching on catabolic pathways that produce ATP, mostly by enhancing oxidative metabolism and mitochondrial biogenesis, while switching off anabolic pathways that consume ATP. This regulation can take place acutely, through the regulation of fast post-translational events, but also by transcriptionally reprogramming the cell to meet energetic needs. Here we demonstrate that AMPK controls the expression of genes involved in energy metabolism in mouse skeletal muscle by acting in coordination with another metabolic sensor, the NAD+-dependent type III deacetylase SIRT1. AMPK enhances SIRT1 activity by increasing cellular NAD+ levels, resulting in the deacetylation and modulation of the activity of downstream SIRT1 targets that include the peroxisome proliferator-activated receptor-γ coactivator 1α and the forkhead box O1 (FOXO1) and O3 (FOXO3a) transcription factors. The AMPK-induced SIRT1-mediated deacetylation of these targets explains many of the convergent biological effects of AMPK and SIRT1 on energy metabolism.


Nature | 2007

Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

Jill Milne; Philip D. Lambert; Simon Schenk; David Carney; Jesse J. Smith; David J. Gagne; Lei Jin; Olivier Boss; Robert B. Perni; Chi B. Vu; Jean E. Bemis; Roger Xie; Jeremy S. Disch; Pui Yee Ng; Joseph J. Nunes; Amy V. Lynch; Hongying Yang; Heidi Galonek; Kristine Israelian; Wendy Choy; Andre Iffland; Siva Lavu; Oliver Medvedik; David A. Sinclair; Jerrold M. Olefsky; Michael R. Jirousek; Peter J. Elliott; Christoph H. Westphal

Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme–peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.


Cell Metabolism | 2008

Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation.

Jerome N. Feige; Marie Lagouge; Carles Cantó; Axelle Strehle; Sander M. Houten; Jill Milne; Philip D. Lambert; Chikage Mataki; Peter J. Elliott; Johan Auwerx

The NAD(+)-dependent deacetylase SIRT1 controls metabolic processes in response to low nutrient availability. We report the metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK. SRT1720 administration robustly enhances endurance running performance and strongly protects from diet-induced obesity and insulin resistance by enhancing oxidative metabolism in skeletal muscle, liver, and brown adipose tissue. These metabolic effects of SRT1720 are mediated by the induction of a genetic network controlling fatty acid oxidation through a multifaceted mechanism that involves the direct deacetylation of PGC-1alpha, FOXO1, and p53 and the indirect stimulation of AMPK signaling through a global metabolic adaptation mimicking low energy levels. Combined with our previous work on resveratrol, the current study further validates SIRT1 as a target for the treatment of metabolic disorders and characterizes the mechanisms underlying the therapeutic potential of SIRT1 activation.


Nature | 2008

A Fasting Inducible Switch Modulates Gluconeogenesis Via Activator-Coactivator Exchange

Yi Liu; Renaud Dentin; Danica Chen; Susan Hedrick; Kim Ravnskjaer; Simon Schenk; Jill Milne; David J. Meyers; Phil Cole; John R. Yates; Jerrold M. Olefsky; Leonard Guarente; Marc Montminy

During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signalling augment gluconeogenic gene expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also targets CRTC2 for degradation after its ubiquitination by the E3 ligase constitutive photomorphogenic protein (COP1). Glucagon effects were attenuated during late fasting, when CRTC2 was downregulated owing to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the Sirt1 gene or by administration of a SIRT1 antagonist, increased CRTC2 activity and glucose output, whereas exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α, encoded by Ppargc1a) by SIRT1 activators, our results illustrate how the exchange of two gluconeogenic regulators during fasting maintains energy balance.


Molecular and Cellular Biology | 2009

SIRT1 Exerts Anti-Inflammatory Effects and Improves Insulin Sensitivity in Adipocytes

Takeshi Yoshizaki; Jill Milne; Takeshi Imamura; Simon Schenk; Noriyuki Sonoda; Jennie L. Babendure; Juu-Chin Lu; Jesse J. Smith; Michael R. Jirousek; Jerrold M. Olefsky

ABSTRACT SIRT1 is a prominent member of a family of NAD+-dependent enzymes and affects a variety of cellular functions ranging from gene silencing, regulation of the cell cycle and apoptosis, to energy homeostasis. In mature adipocytes, SIRT1 triggers lipolysis and loss of fat content. However, the potential effects of SIRT1 on insulin signaling pathways are poorly understood. To assess this, we used RNA interference to knock down SIRT1 in 3T3-L1 adipocytes. SIRT1 depletion inhibited insulin-stimulated glucose uptake and GLUT4 translocation. This was accompanied by increased phosphorylation of JNK and serine phosphorylation of insulin receptor substrate 1 (IRS-1), along with inhibition of insulin signaling steps, such as tyrosine phosphorylation of IRS-1, and phosphorylation of Akt and ERK. In contrast, treatment of cells with specific small molecule SIRT1 activators led to an increase in glucose uptake and insulin signaling as well as a decrease in serine phosphorylation of IRS-1. Moreover, gene expression profiles showed that SIRT1 expression was inversely related to inflammatory gene expression. Finally, we show that treatment of 3T3-L1 adipocytes with a SIRT1 activator attenuated tumor necrosis factor alpha-induced insulin resistance. Taken together, these data indicate that SIRT1 is a positive regulator of insulin signaling at least partially through the anti-inflammatory actions in 3T3-L1 adipocytes.


American Journal of Physiology-endocrinology and Metabolism | 2010

SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity.

Takeshi Yoshizaki; Simon Schenk; Takeshi Imamura; Jennie L. Babendure; Noriyuki Sonoda; Eun Ju Bae; Da Young Oh; Min Lu; Jill Milne; Christoph H. Westphal; Gautam Bandyopadhyay; Jerrold M. Olefsky

Chronic inflammation is an important etiology underlying obesity-related disorders such as insulin resistance and type 2 diabetes, and recent findings indicate that the macrophage can be the initiating cell type responsible for this chronic inflammatory state. The mammalian silent information regulator 2 homolog SIRT1 modulates several physiological processes important for life span, and a potential role of SIRT1 in the regulation of insulin sensitivity has been shown. However, with respect to inflammation, the role of SIRT1 in regulating the proinflammatory pathway within macrophages is poorly understood. Here, we show that knockdown of SIRT1 in the mouse macrophage RAW264.7 cell line and in intraperitoneal macrophages broadly activates the JNK and IKK inflammatory pathways and increases LPS-stimulated TNFalpha secretion. Moreover, gene expression profiles reveal that SIRT1 knockdown leads to an increase in inflammatory gene expression. We also demonstrate that SIRT1 activators inhibit LPS-stimulated inflammatory pathways, as well as secretion of TNFalpha, in a SIRT1-dependent manner in RAW264.7 cells and in primary intraperitoneal macrophages. Treatment of Zucker fatty rats with a SIRT1 activator leads to greatly improved glucose tolerance, reduced hyperinsulinemia, and enhanced systemic insulin sensitivity during glucose clamp studies. These in vivo insulin-sensitizing effects were accompanied by a reduction in tissue inflammation markers and a decrease in the adipose tissue macrophage proinflammatory state, fully consistent with the in vitro effects of SIRT1 in macrophages. In conclusion, these results define a novel role for SIRT1 as an important regulator of macrophage inflammatory responses in the context of insulin resistance and raise the possibility that targeting of SIRT1 might be a useful strategy for treating the inflammatory component of metabolic diseases.


BMC Systems Biology | 2009

Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo.

Jesse J. Smith; Renée Deehan Kenney; David J. Gagne; Brian P. Frushour; William M. Ladd; Heidi Galonek; Kristine Israelian; Jeffrey Song; Giedre Razvadauskaite; Amy V. Lynch; David Carney; Robin J Johnson; Siva Lavu; Andre Iffland; Peter J. Elliott; Philip D. Lambert; Keith O. Elliston; Michael R. Jirousek; Jill Milne; Olivier Boss

BackgroundCalorie restriction (CR) produces a number of health benefits and ameliorates diseases of aging such as type 2 diabetes. The components of the pathways downstream of CR may provide intervention points for developing therapeutics for treating diseases of aging. The NAD+-dependent protein deacetylase SIRT1 has been implicated as one of the key downstream regulators of CR in yeast, rodents, and humans. Small molecule activators of SIRT1 have been identified that exhibit efficacy in animal models of diseases typically associated with aging including type 2 diabetes. To identify molecular processes induced in the liver of mice treated with two structurally distinct SIRT1 activators, SIRT501 (formulated resveratrol) and SRT1720, for three days, we utilized a systems biology approach and applied Causal Network Modeling (CNM) on gene expression data to elucidate downstream effects of SIRT1 activation.ResultsHere we demonstrate that SIRT1 activators recapitulate many of the molecular events downstream of CR in vivo, such as enhancing mitochondrial biogenesis, improving metabolic signaling pathways, and blunting pro-inflammatory pathways in mice fed a high fat, high calorie diet.ConclusionCNM of gene expression data from mice treated with SRT501 or SRT1720 in combination with supporting in vitro and in vivo data demonstrates that SRT501 and SRT1720 produce a signaling profile that mirrors CR, improves glucose and insulin homeostasis, and acts via SIRT1 activation in vivo. Taken together these results are encouraging regarding the use of small molecule activators of SIRT1 for therapeutic intervention into type 2 diabetes, a strategy which is currently being investigated in multiple clinical trials.


The FASEB Journal | 2009

A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9

Yuji Nakamaru; Chaitanya Vuppusetty; Hiroo Wada; Jill Milne; Misako Ito; Christos Rossios; Mark Elliot; James C. Hogg; Sergei A. Kharitonov; Hajime Goto; Jean E. Bemis; Peter J. Elliott; Peter J. Barnes; Kazuhiro Ito

Inappropriate elevation of matrix metalloproteinase‐9 (MMP9) is reported to be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The object of this study was to identify the molecular mechanism underlying this increase of MMP9 expression, and here we show that oxidative stress‐dependent reduction of a protein deacetylase, SIRT1, known as a putative antiaging enzyme, causes elevation of MMP9 expression. A sirtuin inhibitor, splitomycin, and SIRT1 knockdown by RNA interference led an increase in MMP9 expression in human monocytic U937 cells and in primary sputum macrophages, which was detected by RT‐PCR, Western blot, activity assay, and zymography. In fact, the SIRT1 level was significantly decreased in peripheral lungs of patients with COPD, and this increase was inversely correlated with MMP9 expression and MMP9 promoter activation detected by a chromatin immunoprecipitation assay. H2O2 reduced SIRT1 expression and activity in U937 cells;furthermore, cigarette smoke exposure also caused reduction of SIRT1 expression in lung tissue of A/J mice, with concomitant elevation of MMP9. Intranasal treatment of a selective and novel SIRT1 small molecule activator, SRT2172, blocked the increase of MMP9 expression in the lung as well as pulmonary neutrophilia and the reduction in exercise tolerance. Thus, SIRT1 is a negative regulator of MMP9 expression, and SIRT1 activation is implicated as a novel therapeutic approach to treating chronic inflammatory diseases, in which MMP9 is abundant.— Nakamaru, Y., Vuppusetty, C., Wada, H., Milne, J. C., Ito, M., Rossios, C., Elliot, M., Hogg, J., Kharitonov, S., Goto, H., Bemis, J. E., Elliott, P., Barnes, P. J., Ito, K. A protein deacetylase SIRT1 is a negative regulator of metalloproteinase‐9. FASEB J. 23, 2810–2819 (2009).www.fasebj.org


Journal of Biological Chemistry | 2009

Crystal Structures of Human SIRT3 Displaying Substrate-induced Conformational Changes

Lei Jin; Wentao Wei; Yaobin Jiang; Hao Peng; Jianhua Cai; Chen Mao; Han Dai; Wendy Choy; Jean E. Bemis; Michael R. Jirousek; Jill Milne; Christoph H. Westphal; Robert B. Perni

SIRT3 is a major mitochondrial NAD+-dependent protein deacetylase playing important roles in regulating mitochondrial metabolism and energy production and has been linked to the beneficial effects of exercise and caloric restriction. SIRT3 is emerging as a potential therapeutic target to treat metabolic and neurological diseases. We report the first sets of crystal structures of human SIRT3, an apo-structure with no substrate, a structure with a peptide containing acetyl lysine of its natural substrate acetyl-CoA synthetase 2, a reaction intermediate structure trapped by a thioacetyl peptide, and a structure with the dethioacetylated peptide bound. These structures provide insights into the conformational changes induced by the two substrates required for the reaction, the acetylated substrate peptide and NAD+. In addition, the binding study by isothermal titration calorimetry suggests that the acetylated peptide is the first substrate to bind to SIRT3, before NAD+. These structures and biophysical studies provide key insight into the structural and functional relationship of the SIRT3 deacetylation activity.

Collaboration


Dive into the Jill Milne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge