Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeremy S. Disch is active.

Publication


Featured researches published by Jeremy S. Disch.


Nature | 2007

Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

Jill Milne; Philip D. Lambert; Simon Schenk; David Carney; Jesse J. Smith; David J. Gagne; Lei Jin; Olivier Boss; Robert B. Perni; Chi B. Vu; Jean E. Bemis; Roger Xie; Jeremy S. Disch; Pui Yee Ng; Joseph J. Nunes; Amy V. Lynch; Hongying Yang; Heidi Galonek; Kristine Israelian; Wendy Choy; Andre Iffland; Siva Lavu; Oliver Medvedik; David A. Sinclair; Jerrold M. Olefsky; Michael R. Jirousek; Peter J. Elliott; Christoph H. Westphal

Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme–peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.


Journal of Medicinal Chemistry | 2013

Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3.

Jeremy S. Disch; Ghotas Evindar; Cynthia H. Chiu; Charles A. Blum; Han Dai; Lei Jin; Kenneth Lind; Svetlana L. Belyanskaya; Jianghe Deng; Frank T. Coppo; Leah Aquilani; Todd L. Graybill; John W. Cuozzo; Siva Lavu; Cheney Mao; George P. Vlasuk; Robert B. Perni

The sirtuins SIRT1, SIRT2, and SIRT3 are NAD(+) dependent deacetylases that are considered potential targets for metabolic, inflammatory, oncologic, and neurodegenerative disorders. Encoded library technology (ELT) was used to affinity screen a 1.2 million heterocycle enriched library of DNA encoded small molecules, which identified pan-inhibitors of SIRT1/2/3 with nanomolar potency (e.g., 11c: IC50 = 3.6, 2.7, and 4.0 nM for SIRT1, SIRT2, and SIRT3, respectively). Subsequent SAR studies to improve physiochemical properties identified the potent drug like analogues 28 and 31. Crystallographic studies of 11c, 28, and 31 bound in the SIRT3 active site revealed that the common carboxamide binds in the nicotinamide C-pocket and the aliphatic portions of the inhibitors extend through the substrate channel, explaining the observable SAR. These pan SIRT1/2/3 inhibitors, representing a novel chemotype, are significantly more potent than currently available inhibitors, which makes them valuable tools for sirtuin research.


Journal of Medicinal Chemistry | 2009

Discovery of Imidazo[1,2-b]thiazole Derivatives as Novel SIRT1 Activators

Chi B. Vu; Jean E. Bemis; Jeremy S. Disch; Pui Yee Ng; Joseph J. Nunes; Jill Milne; David Carney; Amy V. Lynch; Jesse J. Smith; Siva Lavu; Philip D. Lambert; David J. Gagne; Michael R. Jirousek; Simon Schenk; Jerrold M. Olefsky; Robert B. Perni

A series of imidazo[1,2-b]thiazole derivatives is shown to activate the NAD(+)-dependent deacetylase SIRT1, a potential new therapeutic target to treat various metabolic disorders. This series of compounds was derived from a high throughput screening hit bearing an oxazolopyridine core. Water-solubilizing groups could be installed conveniently at either the C-2 or C-3 position of the imidazo[1,2-b]thiazole ring. The SIRT1 enzyme activity could be adjusted by modifying the amide portion of these imidazo[1,2-b]thiazole derivatives. The most potent analogue within this series, namely, compound 29, has demonstrated oral antidiabetic activity in the ob/ob mouse model, the diet-induced obesity (DIO) mouse model, and the Zucker fa/fa rat model.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of oxazolo[4,5-b]pyridines and related heterocyclic analogs as novel SIRT1 activators

Jean E. Bemis; Chi B. Vu; Roger Xie; Joseph J. Nunes; Pui Yee Ng; Jeremy S. Disch; Jill Milne; David Carney; Amy V. Lynch; Lei Jin; Jesse J. Smith; Siva Lavu; Andre Iffland; Michael R. Jirousek; Robert B. Perni

SIRT1 is an NAD(+)-dependent protein deacetylase that appears to produce beneficial effects on metabolic parameters such as glucose and insulin homeostasis. Activation of SIRT1 by resveratrol (1) has been shown to modulate insulin resistance, increase mitochondrial content and prolong survival in lower organisms and in mice on a high fat diet. Herein, we describe the identification and SAR of a series of oxazolo[4,5-b]pyridines as novel small molecule activators of SIRT1 which are structurally unrelated to and more potent than resveratrol.


Nature Communications | 2015

Crystallographic structure of a small molecule SIRT1 activator-enzyme complex.

Han Dai; April Case; Thomas V. Riera; Thomas Considine; Jessica E. Lee; Yoshitomo Hamuro; Huizhen Zhao; Yong Jiang; Sharon Sweitzer; Beth Pietrak; Benjamin J. Schwartz; Charles A. Blum; Jeremy S. Disch; Richard Caldwell; Bruce G. Szczepankiewicz; Christopher Oalmann; Pui Yee Ng; Brian H. White; Rebecca L. Casaubon; Radha Narayan; Karsten Koppetsch; Francis Bourbonais; Bo Wu; Junfeng Wang; Dongming Qian; Fan Jiang; Cheney Mao; Minghui Wang; Erding Hu; Joseph Wu

SIRT1, the founding member of the mammalian family of seven NAD+-dependent sirtuins, is composed of 747 amino acids forming a catalytic domain and extended N- and C-terminal regions. We report the design and characterization of an engineered human SIRT1 construct (mini-hSIRT1) containing the minimal structural elements required for lysine deacetylation and catalytic activation by small molecule sirtuin-activating compounds (STACs). Using this construct, we solved the crystal structure of a mini-hSIRT1-STAC complex, which revealed the STAC-binding site within the N-terminal domain of hSIRT1. Together with hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis using full-length hSIRT1, these data establish a specific STAC-binding site and identify key intermolecular interactions with hSIRT1. The determination of the interface governing the binding of STACs with human SIRT1 facilitates greater understanding of STAC activation of this enzyme, which holds significant promise as a therapeutic target for multiple human diseases.


Cell Cycle | 2013

Carboxamide SIRT1 inhibitors block DBC1 binding via an acetylation-independent mechanism

Basil P. Hubbard; Christine Loh; Ana P. Gomes; Jun Li; Quinn Lu; Taylor Lg Doyle; Jeremy S. Disch; Sean M. Armour; James L. Ellis; George P. Vlasuk; David A. Sinclair

SIRT1 is an NAD+-dependent deacetylase that counteracts multiple disease states associated with aging and may underlie some of the health benefits of calorie restriction. Understanding how SIRT1 is regulated in vivo could therefore lead to new strategies to treat age-related diseases. SIRT1 forms a stable complex with DBC1, an endogenous inhibitor. Little is known regarding the biochemical nature of SIRT1-DBC1 complex formation, how it is regulated and whether or not it is possible to block this interaction pharmacologically. In this study, we show that critical residues within the catalytic core of SIRT1 mediate binding to DBC1 via its N-terminal region, and that several carboxamide SIRT1 inhibitors, including EX-527, can completely block this interaction. We identify two acetylation sites on DBC1 that regulate its ability to bind SIRT1 and suppress its activity. Furthermore, we show that DBC1 itself is a substrate for SIRT1. Surprisingly, the effect of EX-527 on SIRT1-DBC1 binding is independent of DBC1 acetylation. Together, these data show that protein acetylation serves as an endogenous regulatory mechanism for SIRT1-DBC1 binding and illuminate a new path to developing small-molecule modulators of SIRT1.


Archive | 2006

Sirtuin modulating compounds

Joseph J. Nunes; Jill Milne; Jean E. Bemis; Roger Xie; Chi B. Vu; Pui Yee Ng; Jeremy S. Disch


Archive | 2006

Imidazo [2,1-b] thiazole derivatives as sirtuin modulating compounds

Joseph J. Nunes; Jill Milne; Jean E. Bemis; Roger Xie; Chi B. Vu; Pui Yee Ng; Jeremy S. Disch


Archive | 2006

Benzimidazole derivatives as sirtuin modulators

Joseph J. Nunes; Jill Milne; Jean E. Bemis; Roger Xie; Chi B. Vu; Pui Yee Ng; Jeremy S. Disch


Archive | 2010

Bicyclic pyridines and analogs as sirtuin modulators

Pui Yee Ng; Charles A. Blum; Lauren Mcpherson; Robert B. Perni; Chi B. Vu; Mohammed Mahmood Ahmed; Jeremy S. Disch

Collaboration


Dive into the Jeremy S. Disch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge