Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jillian S. Parboosingh is active.

Publication


Featured researches published by Jillian S. Parboosingh.


American Journal of Human Genetics | 2005

Homozygous Deletion of the Very Low Density Lipoprotein Receptor Gene Causes Autosomal Recessive Cerebellar Hypoplasia with Cerebral Gyral Simplification

Kym M. Boycott; Shauna Flavelle; Alexandre Bureau; Hannah C. Glass; T. Mary Fujiwara; Elaine Wirrell; Krista Davey; Albert E. Chudley; James N. Scott; D. Ross McLeod; Jillian S. Parboosingh

An autosomal recessive syndrome of nonprogressive cerebellar ataxia and mental retardation is associated with inferior cerebellar hypoplasia and mild cerebral gyral simplification in the Hutterite population. An identity-by-descent mapping approach using eight patients from three interrelated Hutterite families localized the gene for this syndrome to chromosome region 9p24. Haplotype analysis identified familial and ancestral recombination events and refined the minimal region to a 2-Mb interval between markers D9S129 and D9S1871. A 199-kb homozygous deletion encompassing the entire very low density lipoprotein receptor (VLDLR) gene was present in all affected individuals. VLDLR is part of the reelin signaling pathway, which guides neuroblast migration in the cerebral cortex and cerebellum. To our knowledge, this syndrome represents the first human lipoprotein receptor malformation syndrome and the second human disease associated with a reelin pathway defect.


American Journal of Human Genetics | 2012

Haploinsufficiency of SF3B4, a Component of the Pre-mRNA Spliceosomal Complex, Causes Nager Syndrome

Francois P. Bernier; Oana Caluseriu; Sarah Ng; Jeremy Schwartzentruber; Kati J. Buckingham; A. Micheil Innes; Ethylin Wang Jabs; Jeffrey W. Innis; Jane L. Schuette; Jerome L. Gorski; Peter H. Byers; Gregor Andelfinger; Victoria M. Siu; Julie Lauzon; Bridget A. Fernandez; Margaret J. McMillin; Richard H. Scott; Hilary Racher; Jacek Majewski; Deborah A. Nickerson; Jay Shendure; Michael J. Bamshad; Jillian S. Parboosingh

Nager syndrome, first described more than 60 years ago, is the archetype of a class of disorders called the acrofacial dysostoses, which are characterized by craniofacial and limb malformations. Despite intensive efforts, no gene for Nager syndrome has yet been identified. In an international collaboration, FORGE Canada and the National Institutes of Health Centers for Mendelian Genomics used exome sequencing as a discovery tool and found that mutations in SF3B4, a component of the U2 pre-mRNA spliceosomal complex, cause Nager syndrome. After Sanger sequencing of SF3B4 in a validation cohort, 20 of 35 (57%) families affected by Nager syndrome had 1 of 18 different mutations, nearly all of which were frameshifts. These results suggest that most cases of Nager syndrome are caused by haploinsufficiency of SF3B4. Our findings add Nager syndrome to a growing list of disorders caused by mutations in genes that encode major components of the spliceosome and also highlight the synergistic potential of international collaboration when exome sequencing is applied in the search for genes responsible for rare Mendelian phenotypes.


Nature Cell Biology | 2015

An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

Gabrielle Wheway; Miriam Schmidts; Dorus A. Mans; Katarzyna Szymanska; Thanh Minh T Nguyen; Hilary Racher; Ian G. Phelps; Grischa Toedt; Julie Kennedy; Kirsten A. Wunderlich; Nasrin Sorusch; Zakia Abdelhamed; Subaashini Natarajan; Warren Herridge; Jeroen van Reeuwijk; Nicola Horn; Karsten Boldt; David A. Parry; Stef J.F. Letteboer; Susanne Roosing; Matthew Adams; Sandra M. Bell; Jacquelyn Bond; Julie Higgins; Ewan E. Morrison; Darren C. Tomlinson; Gisela G. Slaats; Teunis J. P. van Dam; Lijia Huang; Kristin Kessler

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin–proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.


Journal of Medical Genetics | 2006

Evaluation of BRCA1 and BRCA2 mutation prevalence, risk prediction models and a multistep testing approach in French-Canadian families with high risk of breast and ovarian cancer

Jacques Simard; Martine Dumont; Anne Marie Moisan; Valerie Gaborieau; Hélène Vézina; Francine Durocher; Jocelyne Chiquette; Marie Plante; Denise Avard; Paul Bessette; Claire Brousseau; Michel Dorval; Béatrice Godard; Louis Houde; Yann Joly; Marie-Andrée Lajoie; Gilles Leblanc; Jean Lépine; Bernard Lespérance; Hélène Malouin; Jillian S. Parboosingh; Roxane Pichette; Louise Provencher; Josée Rhéaume; Daniel Sinnett; Carolle Samson; Jean-Claude Simard; Martine Tranchant; Patricia Voyer; Douglas F. Easton

Background and objective: In clinical settings with fixed resources allocated to predictive genetic testing for high-risk cancer predisposition genes, optimal strategies for mutation screening programmes are critically important. These depend on the mutation spectrum found in the population under consideration and the frequency of mutations detected as a function of the personal and family history of cancer, which are both affected by the presence of founder mutations and demographic characteristics of the underlying population. The results of multistep genetic testing for mutations in BRCA1 or BRCA2 in a large series of families with breast cancer in the French-Canadian population of Quebec, Canada are reported. Methods: A total of 256 high-risk families were ascertained from regional familial cancer clinics throughout the province of Quebec. Initially, families were tested for a panel of specific mutations known to occur in this population. Families in which no mutation was identified were then comprehensively tested. Three algorithms to predict the presence of mutations were evaluated, including the prevalence tables provided by Myriad Genetics Laboratories, the Manchester Scoring System and a logistic regression approach based on the data from this study. Results: 8 of the 15 distinct mutations found in 62 BRCA1/BRCA2-positive families had never been previously reported in this population, whereas 82% carried 1 of the 4 mutations currently observed in ⩾2 families. In the subset of 191 families in which at least 1 affected individual was tested, 29% carried a mutation. Of these 27 BRCA1-positive and 29 BRCA2-positive families, 48 (86%) were found to harbour a mutation detected by the initial test. Among the remaining 143 inconclusive families, all 8 families found to have a mutation after complete sequencing had Manchester Scores ⩾18. The logistic regression and Manchester Scores provided equal predictive power, and both were significantly better than the Myriad Genetics Laboratories prevalence tables (p<0.001). A threshold of Manchester Score ⩾18 provided an overall sensitivity of 86% and a specificity of 82%, with a positive predictive value of 66% in this population. Conclusion: In this population, a testing strategy with an initial test using a panel of reported recurrent mutations, followed by full sequencing in families with Manchester Scores ⩾18, represents an efficient test in terms of overall cost and sensitivity.


American Journal of Medical Genetics Part A | 2008

Costello syndrome associated with novel germline HRAS mutations: An attenuated phenotype?

Karen W. Gripp; A. Micheil Innes; Marni E. Axelrad; Tanya L. Gillan; Jillian S. Parboosingh; Christine Davies; Norma J. Leonard; Monique Lapointe; Daniel Doyle; Sarah Catalano; Linda Nicholson; Deborah L. Stabley; Katia Sol-Church

Costello syndrome is a rare congenital disorder typically characterized by severe failure‐to‐thrive, cardiac abnormalities including tachyarrhythmia and hypertrophic cardiomyopathy, distinctive facial features, a predisposition to papillomata and malignant tumors, neurologic abnormalities, developmental delay, and mental retardation. Its underlying cause is de novo germline mutations in the oncogene HRAS. Almost all Costello syndrome mutations affect one of the glycine residues in position 12 or 13 of the protein product. More than 80% of patients with Costello syndrome share the same underlying mutation, resulting in a G12S amino acid change. We report on two patients with novel HRAS mutations affecting amino acids 58 (T58I) and 146 (A146V), respectively. Despite facial features that appear less coarse than those typically seen in Costello patients, both patients show many of the physical and developmental problems characteristic for Costello syndrome. These novel HRAS mutations may be less common than the frequently reported G12S change, or patients with these changes may be undiagnosed due to their less coarse facial features. In addition to the findings previously known to occur in Costello syndrome, one of our patients had hypertrophic pyloric stenosis. This led us to review the medical histories on a cohort of proven HRAS mutation positive Costello syndrome patients, and we found a statistically significantly (Pu2009<u20090.001) increased frequency of pyloric stenosis in Costello syndrome (5/58) compared to the general population frequency of 2–3/1,000. Thus we add hypertrophic pyloric stenosis to the abnormalities seen with increased frequency in Costello syndrome.


Clinical Genetics | 2015

Whole-exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: a retrospective study

David A. Dyment; Martine Tétreault; Chandree L. Beaulieu; Taila Hartley; P. Ferreira; Jodi Warman Chardon; J. Marcadier; Sarah L. Sawyer; S.J. Mosca; A.M. Innes; Jillian S. Parboosingh; Dennis E. Bulman; Jeremy Schwartzentruber; Jacek Majewski; Mark A. Tarnopolsky; Kym M. Boycott; Care Rare Canada

Whole‐exome sequencing (WES) has transformed our ability to detect mutations causing rare diseases. FORGE (Finding Of Rare disease GEnes) and Care4Rare Canada are nation‐wide projects focused on identifying disease genes using WES and translating this technology to patient care. Rare forms of epilepsy are well‐suited for WES and we retrospectively selected FORGE and Care4Rare families with clinical descriptions that included childhood‐onset epilepsy or seizures not part of a recognizable syndrome or an early‐onset encephalopathy where standard‐of‐care investigations were unrevealing. Nine families met these criteria and a diagnosis was made in seven, and potentially eight, of the families. In the eight families we identified mutations in genes associated with known neurological and epilepsy disorders: ASAH1, FOLR1, GRIN2A (two families), SCN8A, SYNGAP1 and SYNJ1. A novel and rare mutation was identified in KCNQ2 and was likely responsible for the benign seizures segregating in the family though additional evidence would be required to be definitive. In retrospect, the clinical presentation of four of the patients was considered atypical, thereby broadening the phenotypic spectrum of these conditions. Given the extensive clinical and genetic heterogeneity associated with epilepsy, our findings suggest that WES may be considered when a specific gene is not immediately suspected as causal.


American Journal of Human Genetics | 2014

Mutations in LAMA1 Cause Cerebellar Dysplasia and Cysts with and without Retinal Dystrophy

Kimberly A. Aldinger; Stephen J. Mosca; Martine Tétreault; Jennifer C. Dempsey; Gisele E. Ishak; Taila Hartley; Ian G. Phelps; Ryan E. Lamont; Diana R. O’Day; Donald Basel; Karen W. Gripp; Laura D. Baker; Mark J. Stephan; Francois P. Bernier; Kym M. Boycott; Jacek Majewski; Jillian S. Parboosingh; A. Micheil Innes; Dan Doherty

Cerebellar dysplasia with cysts (CDC) is an imaging finding typically seen in combination with cobblestone cortex and congenital muscular dystrophy in individuals with dystroglycanopathies. More recently, CDC was reported in seven children without neuromuscular involvement (Poretti-Boltshauser syndrome). Using a combination of homozygosity mapping and whole-exome sequencing, we identified biallelic mutations in LAMA1 as the cause of CDC in seven affected individuals (from five families) independent from those included in the phenotypic description of Poretti-Boltshauser syndrome. Most of these individuals also have high myopia, and some have retinal dystrophy and patchy increased T2-weighted fluid-attenuated inversion recovery (T2/FLAIR) signal in cortical white matter. In one additional family, we identified two siblings who have truncating LAMA1 mutations in combination with retinal dystrophy and mild cerebellar dysplasia without cysts, indicating that cysts are not an obligate feature associated with loss of LAMA1 function. This work expands the phenotypic spectrum associated with the lamininopathy disorders and highlights the tissue-specific roles played by different laminin-encoding genes.


American Journal of Human Genetics | 2014

Mutations in CSPP1, Encoding a Core Centrosomal Protein, Cause a Range of Ciliopathy Phenotypes in Humans

Ranad Shaheen; Hanan E. Shamseldin; Catrina M. Loucks; Mohammed Zain Seidahmed; Shinu Ansari; Mohamed M.I. Khalil; Nadya Al-Yacoub; Erica E. Davis; Natalie A. Mola; Katarzyna Szymanska; Warren Herridge; Albert E. Chudley; Bernard N. Chodirker; Jeremy Schwartzentruber; Jacek Majewski; Nicholas Katsanis; Coralie Poizat; Colin A. Johnson; Jillian S. Parboosingh; Kym M. Boycott; A. Micheil Innes; Fowzan S. Alkuraya

Ciliopathies are characterized by a pattern of multisystem involvement that is consistent with the developmental role of the primary cilium. Within this biological module, mutations in genes that encode components of the cilium and its anchoring structure, the basal body, are the major contributors to both disease causality and modification. However, despite rapid advances in this field, the majority of the genes that drive ciliopathies and the mechanisms that govern the pronounced phenotypic variability of this group of disorders remain poorly understood. Here, we show that mutations in CSPP1, which encodes a core centrosomal protein, are disease causing on the basis of the independent identification of two homozygous truncating mutations in three consanguineous families (one Arab and two Hutterite) affected by variable ciliopathy phenotypes ranging from Joubert syndrome to the more severe Meckel-Gruber syndrome with perinatal lethality and occipital encephalocele. Consistent with the recently described role of CSPP1 in ciliogenesis, we show that mutant fibroblasts from one affected individual have severely impaired ciliogenesis with concomitant defects in sonic hedgehog (SHH) signaling. Our results expand the list of centrosomal proteins implicated in human ciliopathies.


American Journal of Human Genetics | 2015

TAF1 Variants Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological Manifestations.

Jason A. O’Rawe; Yiyang Wu; Max J. Dörfel; Alan F. Rope; P.Y. Billie Au; Jillian S. Parboosingh; Sungjin Moon; Maria Kousi; Konstantina Kosma; Christopher Smith; Maria Tzetis; Jane L. Schuette; Robert B. Hufnagel; Carlos E. Prada; Francisco Venegas Martínez; Carmen Orellana; Jonathan Crain; Alfonso Caro-Llopis; Silvestre Oltra; Sandra Monfort; Laura T. Jiménez-Barrón; Jeffrey Swensen; Sara Ellingwood; Rosemarie Smith; Han Fang; Sandra Ospina; Sander Stegmann; Nicolette S. den Hollander; David Mittelman; Gareth Highnam

We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.


American Journal of Medical Genetics Part A | 2007

Meckel syndrome in the Hutterite population is actually a Joubert-related cerebello-oculo-renal syndrome.

Kym M. Boycott; Jillian S. Parboosingh; James N. Scott; D. Ross McLeod; Cheryl R. Greenberg; T. Mary Fujiwara; Jean K. Mah; Julian P. Midgley; Andrew Wade; Francois P. Bernier; Bernard N. Chodirker; Martin Bunge; A. Micheil Innes

Meckel syndrome (MKS) is a rare lethal autosomal recessive disorder characterized by the presence of occipital encephalocele, cystic kidneys, fibrotic changes of the liver and polydactyly. Joubert syndrome (JS)‐related disorders (JSRDs) or cerebello‐oculo‐renal syndromes (CORS) are a group of recessively inherited conditions characterized by a molar tooth sign (MTS) on cranial MRI, a set of core clinical features (developmental delay/mental retardation, hypotonia, ataxia, episodic breathing abnormalities, abnormal eye movements) and variable involvement of other systems including renal, ocular, central nervous system, craniofacial, hepatic, and skeletal. A significant clinical overlap between MKS and JSRD/CORS has been recognized in the literature. We describe a group of 10 Hutterite patients, of which 7 had been previously diagnosed with MKS, with a JSRD. Clinical features include variable early mortality, cognitive handicap, a characteristic dysmorphic facial appearance, hypotonia, ataxia, abnormal breathing pattern, nystagmus, and MTS on MRI. Additional features include occipital encephalocele, posterior fossa fluid collections resembling Dandy–Walker malformation, hydrocephalus, coloboma, and renal disease. This JSRD is a recognizable dysmorphic syndrome characterized by hypertelorism, deep‐set eyes, down‐slanting palpebral fissures, ptosis, arched eyebrows with medial sparseness, square nasal tip, short philtrum with tented upper lip, open mouth with down‐turned corners, and posteriorly rotated low‐set ears. Renal disease is present in 70% of patients and is characterized by cystic kidneys, abnormalities in renal function and hypertension. Homozygous deletions of NPHP1 and the known loci for JS/JSRD and MKS were excluded by identity‐by‐descent mapping studies suggesting that this condition in the Hutterites represents yet another locus for a JSRD.

Collaboration


Dive into the Jillian S. Parboosingh's collaboration.

Top Co-Authors

Avatar

A. Micheil Innes

Alberta Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kym M. Boycott

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Ross McLeod

Alberta Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Dyment

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge