Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Micheil Innes is active.

Publication


Featured researches published by A. Micheil Innes.


Nature Genetics | 2012

De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes

Jean-Baptiste Rivière; Ghayda M. Mirzaa; Brian J. O'Roak; Margaret Beddaoui; Diana Alcantara; Robert Conway; Judith St-Onge; Jeremy Schwartzentruber; Karen W. Gripp; Sarah M. Nikkel; Christopher T. Sullivan; Thomas R Ward; Hailly Butler; Nancy Kramer; Beate Albrecht; Christine M. Armour; Linlea Armstrong; Oana Caluseriu; Cheryl Cytrynbaum; Beth A. Drolet; A. Micheil Innes; Julie Lauzon; Angela E. Lin; Grazia M.S. Mancini; Wendy S. Meschino; James Reggin; Anand Saggar; Tally Lerman-Sagie; Gökhan Uyanik; Rosanna Weksberg

Megalencephaly-capillary malformation (MCAP) and megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndromes are sporadic overgrowth disorders associated with markedly enlarged brain size and other recognizable features. We performed exome sequencing in 3 families with MCAP or MPPH, and our initial observations were confirmed in exomes from 7 individuals with MCAP and 174 control individuals, as well as in 40 additional subjects with megalencephaly, using a combination of Sanger sequencing, restriction enzyme assays and targeted deep sequencing. We identified de novo germline or postzygotic mutations in three core components of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. These include 2 mutations in AKT3, 1 recurrent mutation in PIK3R2 in 11 unrelated families with MPPH and 15 mostly postzygotic mutations in PIK3CA in 23 individuals with MCAP and 1 with MPPH. Our data highlight the central role of PI3K-AKT signaling in vascular, limb and brain development and emphasize the power of massively parallel sequencing in a challenging context of phenotypic and genetic heterogeneity combined with postzygotic mosaicism.


Annals of Neurology | 2003

Bilateral Frontoparietal Polymicrogyria: Clinical and Radiological Features in 10 Families with Linkage to Chromosome 16

Bernard S. Chang; Xianhua Piao; Adria Bodell; Lina Basel-Vanagaite; Rachel Straussberg; William B. Dobyns; Bassam Qasrawi; Robin M. Winter; A. Micheil Innes; Thomas Voit; P. Ellen Grant; A. James Barkovich; Christopher A. Walsh

Polymicrogyria is a common malformation of cortical development characterized by an excessive number of small gyri and abnormal cortical lamination. Multiple syndromes of region‐specific bilateral symmetric polymicrogyria have been reported. We previously have described two families with bilateral frontoparietal polymicrogyria (BFPP), an autosomal recessive syndrome that we mapped to a locus on chromosome 16q12‐21. Here, we extend our observations to include 19 patients from 10 kindreds, all linked to the chromosome 16q locus, allowing us to define the clinical and radiological features of BFPP in detail. The syndrome is characterized by global developmental delay of at least moderate severity, seizures, dysconjugate gaze, and bilateral pyramidal and cerebellar signs. Magnetic resonance imaging demonstrated symmetric polymicrogyria affecting the frontoparietal regions most severely, as well as ventriculomegaly, bilateral white matter signal changes, and small brainstem and cerebellar structures. We have refined our genetic mapping and describe two apparent founder haplotypes, one of which is present in two families with BFPP and associated microcephaly. Because 11 of our patients initially were classified as having other malformations, the syndrome of BFPP appears to be more common than previously recognized and may be frequently misdiagnosed. Ann Neurol 2003


American Journal of Human Genetics | 2012

Haploinsufficiency of SF3B4, a Component of the Pre-mRNA Spliceosomal Complex, Causes Nager Syndrome

Francois P. Bernier; Oana Caluseriu; Sarah Ng; Jeremy Schwartzentruber; Kati J. Buckingham; A. Micheil Innes; Ethylin Wang Jabs; Jeffrey W. Innis; Jane L. Schuette; Jerome L. Gorski; Peter H. Byers; Gregor Andelfinger; Victoria M. Siu; Julie Lauzon; Bridget A. Fernandez; Margaret J. McMillin; Richard H. Scott; Hilary Racher; Jacek Majewski; Deborah A. Nickerson; Jay Shendure; Michael J. Bamshad; Jillian S. Parboosingh

Nager syndrome, first described more than 60 years ago, is the archetype of a class of disorders called the acrofacial dysostoses, which are characterized by craniofacial and limb malformations. Despite intensive efforts, no gene for Nager syndrome has yet been identified. In an international collaboration, FORGE Canada and the National Institutes of Health Centers for Mendelian Genomics used exome sequencing as a discovery tool and found that mutations in SF3B4, a component of the U2 pre-mRNA spliceosomal complex, cause Nager syndrome. After Sanger sequencing of SF3B4 in a validation cohort, 20 of 35 (57%) families affected by Nager syndrome had 1 of 18 different mutations, nearly all of which were frameshifts. These results suggest that most cases of Nager syndrome are caused by haploinsufficiency of SF3B4. Our findings add Nager syndrome to a growing list of disorders caused by mutations in genes that encode major components of the spliceosome and also highlight the synergistic potential of international collaboration when exome sequencing is applied in the search for genes responsible for rare Mendelian phenotypes.


American Journal of Human Genetics | 2013

Mutations in PIK3R1 Cause SHORT Syndrome

David A. Dyment; Amanda Smith; Diana Alcantara; Jeremy Schwartzentruber; Lina Basel-Vanagaite; Cynthia J. Curry; I. Karen Temple; William Reardon; Sahar Mansour; Mushfequr R. Haq; Rodney D. Gilbert; Ordan J. Lehmann; Megan R. Vanstone; Chandree L. Beaulieu; Jacek Majewski; Dennis E. Bulman; Mark O’Driscoll; Kym M. Boycott; A. Micheil Innes

SHORT syndrome is a rare, multisystem disease characterized by short stature, anterior-chamber eye anomalies, characteristic facial features, lipodystrophy, hernias, hyperextensibility, and delayed dentition. As part of the FORGE (Finding of Rare Disease Genes) Canada Consortium, we studied individuals with clinical features of SHORT syndrome to identify the genetic etiology of this rare disease. Whole-exome sequencing in a family trio of an affected child and unaffected parents identified a de novo frameshift insertion, c.1906_1907insC (p.Asn636Thrfs*18), in exon 14 of PIK3R1. Heterozygous mutations in exon 14 of PIK3R1 were subsequently identified by Sanger sequencing in three additional affected individuals and two affected family members. One of these mutations, c.1945C>T (p.Arg649Trp), was confirmed to be a de novo mutation in one affected individual and was also identified and shown to segregate with the phenotype in an unrelated family. The other mutation, a de novo truncating mutation (c.1971T>G [p.Tyr657*]), was identified in another affected individual. PIK3R1 is involved in the phosphatidylinositol 3 kinase (PI3K) signaling cascade and, as such, plays an important role in cell growth, proliferation, and survival. Functional studies on lymphoblastoid cells with the PIK3R1 c.1906_1907insC mutation showed decreased phosphorylation of the downstream S6 target of the PI3K-AKT-mTOR pathway. Our findings show that PIK3R1 mutations are the major cause of SHORT syndrome and suggest that the molecular mechanism of disease might involve downregulation of the PI3K-AKT-mTOR pathway.


American Journal of Human Genetics | 2009

Mutations in the Heparan-Sulfate Proteoglycan Glypican 6 (GPC6) Impair Endochondral Ossification and Cause Recessive Omodysplasia

Ana Belinda Campos-Xavier; Danielle Martinet; John F. Bateman; Dan Belluoccio; Lynn Rowley; Tiong Yang Tan; Alica Baxová; Karl-Henrik Gustavson; Zvi U. Borochowitz; A. Micheil Innes; Sheila Unger; Jacques S. Beckmann; Laureane Mittaz; Diana Ballhausen; Andrea Superti-Furga; Ravi Savarirayan; Luisa Bonafé

Glypicans are a family of glycosylphosphatidylinositol (GPI)-anchored, membrane-bound heparan sulfate (HS) proteoglycans. Their biological roles are only partly understood, although it is assumed that they modulate the activity of HS-binding growth factors. The involvement of glypicans in developmental morphogenesis and growth regulation has been highlighted by Drosophila mutants and by a human overgrowth syndrome with multiple malformations caused by glypican 3 mutations (Simpson-Golabi-Behmel syndrome). We now report that autosomal-recessive omodysplasia, a genetic condition characterized by short-limbed short stature, craniofacial dysmorphism, and variable developmental delay, maps to chromosome 13 (13q31.1-q32.2) and is caused by point mutations or by larger genomic rearrangements in glypican 6 (GPC6). All mutations cause truncation of the GPC6 protein and abolish both the HS-binding site and the GPI-bearing membrane-associated domain, and thus loss of function is predicted. Expression studies in microdissected mouse growth plate revealed expression of Gpc6 in proliferative chondrocytes. Thus, GPC6 seems to have a previously unsuspected role in endochondral ossification and skeletal growth, and its functional abrogation results in a short-limb phenotype.


Nature Cell Biology | 2015

An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

Gabrielle Wheway; Miriam Schmidts; Dorus A. Mans; Katarzyna Szymanska; Thanh Minh T Nguyen; Hilary Racher; Ian G. Phelps; Grischa Toedt; Julie Kennedy; Kirsten A. Wunderlich; Nasrin Sorusch; Zakia Abdelhamed; Subaashini Natarajan; Warren Herridge; Jeroen van Reeuwijk; Nicola Horn; Karsten Boldt; David A. Parry; Stef J.F. Letteboer; Susanne Roosing; Matthew Adams; Sandra M. Bell; Jacquelyn Bond; Julie Higgins; Ewan E. Morrison; Darren C. Tomlinson; Gisela G. Slaats; Teunis J. P. van Dam; Lijia Huang; Kristin Kessler

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin–proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.


American Journal of Medical Genetics Part A | 2011

Clinical, pathological, and molecular analyses of cardiovascular abnormalities in Costello syndrome: A Ras/MAPK pathway syndrome

Angela E. Lin; Mark E. Alexander; Steven D. Colan; Bronwyn Kerr; Katherine A. Rauen; Jeanne M. Baffa; Elizabeth Hopkins; Katia Sol-Church; Giuseppe Limongelli; M C Digilio; Bruno Marino; A. Micheil Innes; Yoko Aoki; Michael Silberbach; Marie Ange Delrue; Susan M. White; Robert M. Hamilton; William N. O'Connor; Paul Grossfeld; Leslie B. Smoot; Robert F. Padera; Karen W. Gripp

Cardiovascular abnormalities are important features of Costello syndrome and other Ras/MAPK pathway syndromes (“RASopathies”). We conducted clinical, pathological and molecular analyses of 146 patients with an HRAS mutation including 61 enrolled in an ongoing longitudinal study and 85 from the literature. In our study, the most common (84%) HRAS mutation was p.G12S. A congenital heart defect (CHD) was present in 27 of 61 patients (44%), usually non‐progressive valvar pulmonary stenosis. Hypertrophic cardiomyopathy (HCM), typically subaortic septal hypertrophy, was noted in 37 (61%), and 5 also had a CHD (14% of those with HCM). HCM was chronic or progressive in 14 (37%), stabilized in 10 (27%), and resolved in 5 (15%) patients with HCM; follow‐up data was not available in 8 (22%). Atrial tachycardia occurred in 29 (48%). Valvar pulmonary stenosis rarely progressed and atrial septal defect was uncommon. Among those with HCM, the likelihood of progressing or remaining stable was similar (37%, 41% respectively). The observation of myocardial fiber disarray in 7 of 10 (70%) genotyped specimens with Costello syndrome is consistent with sarcomeric dysfunction. Multifocal atrial tachycardia may be distinctive for Costello syndrome. Potentially serious atrial tachycardia may present in the fetus, and may continue or worsen in about one‐fourth of those with arrhythmia, but is generally self‐limited in the remaining three‐fourths of patients. Physicians should be aware of the potential for rapid development of severe HCM in infants with Costello syndrome, and the need for cardiovascular surveillance into adulthood as the natural history continues to be delineated.


American Journal of Human Genetics | 2015

SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation

Julien H. Park; Max Hogrebe; Marianne Grüneberg; Ingrid DuChesne; Ava L. von der Heiden; Janine Reunert; Karl P. Schlingmann; Kym M. Boycott; Chandree L. Beaulieu; Aziz Mhanni; A. Micheil Innes; Konstanze Hörtnagel; Saskia Biskup; Eva M. Gleixner; Gerhard Kurlemann; Barbara Fiedler; Heymut Omran; Frank Rutsch; Yoshinao Wada; Konstantinos Tsiakas; René Santer; Daniel W. Nebert; Stephan Rust; Thorsten Marquardt

SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of transferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the maternal allele was identified among a group of unresolved case subjects with CDG. These data demonstrate that variants in SLC39A8 impair the function of manganese-dependent enzymes, most notably β-1,4-galactosyltransferase, a Golgi enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with inherited glycosylation disorders.


Human Molecular Genetics | 2014

Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance

Frank J. Kaiser; Morad Ansari; Diana Braunholz; María Concepción Gil-Rodríguez; Christophe Decroos; Jonathan Wilde; Christopher T. Fincher; Maninder Kaur; Masashige Bando; David J. Amor; Paldeep Singh Atwal; Melanie Bahlo; Christine M. Bowman; Jacquelyn J. Bradley; Han G. Brunner; Dinah Clark; Miguel del Campo; Nataliya Di Donato; Peter Diakumis; Holly Dubbs; David A. Dyment; Juliane Eckhold; Sarah Ernst; Jose Carlos Ferreira; Lauren J. Francey; Ulrike Gehlken; Encarna Guillén-Navarro; Yolanda Gyftodimou; Bryan D. Hall; Raoul C. M. Hennekam

Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ∼5% of subjects, often with atypical CdLS features. Recently, we identified mutations in the X-linked gene HDAC8 as the cause of a small number of CdLS cases. Here, we report a cohort of 38 individuals with an emerging spectrum of features caused by HDAC8 mutations. For several individuals, the diagnosis of CdLS was not considered prior to genomic testing. Most mutations identified are missense and de novo. Many cases are heterozygous females, each with marked skewing of X-inactivation in peripheral blood DNA. We also identified eight hemizygous males who are more severely affected. The craniofacial appearance caused by HDAC8 mutations overlaps that of typical CdLS but often displays delayed anterior fontanelle closure, ocular hypertelorism, hooding of the eyelids, a broader nose and dental anomalies, which may be useful discriminating features. HDAC8 encodes the lysine deacetylase for the cohesin subunit SMC3 and analysis of the functional consequences of the missense mutations indicates that all cause a loss of enzymatic function. These data demonstrate that loss-of-function mutations in HDAC8 cause a range of overlapping human developmental phenotypes, including a phenotypically distinct subgroup of CdLS.


American Journal of Human Genetics | 2015

Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling

Lot Snijders Blok; Erik Madsen; Jane Juusola; Christian Gilissen; Diana Baralle; Margot R.F. Reijnders; Hanka Venselaar; Céline Helsmoortel; Megan T. Cho; Alexander Hoischen; Lisenka E.L.M. Vissers; Tom S. Koemans; Willemijn Wissink-Lindhout; Evan E. Eichler; Corrado Romano; Hilde Van Esch; Connie Stumpel; Maaike Vreeburg; Eric Smeets; Karin Oberndorff; Bregje W.M. van Bon; Marie Shaw; Jozef Gecz; Eric Haan; Melanie Bienek; Corinna Jensen; Bart Loeys; Anke Van Dijck; A. Micheil Innes; Hilary Racher

Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.

Collaboration


Dive into the A. Micheil Innes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kym M. Boycott

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Dyment

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

D. Ross McLeod

Alberta Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge