Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan E. Lamont is active.

Publication


Featured researches published by Ryan E. Lamont.


Nature Cell Biology | 2015

An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

Gabrielle Wheway; Miriam Schmidts; Dorus A. Mans; Katarzyna Szymanska; Thanh Minh T Nguyen; Hilary Racher; Ian G. Phelps; Grischa Toedt; Julie Kennedy; Kirsten A. Wunderlich; Nasrin Sorusch; Zakia Abdelhamed; Subaashini Natarajan; Warren Herridge; Jeroen van Reeuwijk; Nicola Horn; Karsten Boldt; David A. Parry; Stef J.F. Letteboer; Susanne Roosing; Matthew Adams; Sandra M. Bell; Jacquelyn Bond; Julie Higgins; Ewan E. Morrison; Darren C. Tomlinson; Gisela G. Slaats; Teunis J. P. van Dam; Lijia Huang; Kristin Kessler

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin–proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.


Science Signaling | 2006

MAPping Out Arteries and Veins

Ryan E. Lamont; Sarah J. Childs

Growing evidence suggests that a genetic program specifies the identity of arteries and veins before the onset of circulation. A signaling cascade involving sonic hedgehog (Shh), vascular endothelial growth factor (VEGF), the VEGF receptor 2 (VEGFR2), homeobox proteins Foxc1 and Foxc2, the Notch receptor, and the downstream transcription factor gridlock is required for expression of arterial markers, whereas only a single transcription factor, COUP-TFII (chicken ovalbumin upstream promoter–transcription factor II), has previously been implicated in maintaining venous fate. Recent work has now implicated two competing pathways downstream of VEGFR2 in arterial versus venous specification: Activation of the phospholipase C–γ (PLC-γ)–mitogen-activated protein kinase (MAPK) pathway acts in arterial specification, whereas the phosphoinositide 3-kinase (PI3K)–Akt pathway acts to allow a venous fate by inhibition of the PLC-γ–MAPK pathway. Here, we review this work and discuss how activation of the MAPK signaling cascade could stimulate an arterial fate.


American Journal of Human Genetics | 2013

Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability

Nina Bögershausen; Nassim Shahrzad; Jessica X. Chong; Jürgen Christoph Von Kleist-Retzow; Daniela Stanga; Yun Li; Francois P. Bernier; Catrina M. Loucks; Radu Wirth; Eric Puffenberger; Robert A. Hegele; Julia Schreml; Gabriel Lapointe; Katharina Keupp; Christopher L. Brett; Rebecca Anderson; Andreas Hahn; A. Micheil Innes; Oksana Suchowersky; Marilyn B. Mets; Gudrun Nürnberg; D. Ross McLeod; Holger Thiele; Darrel Waggoner; Janine Altmüller; Kym M. Boycott; Benedikt Schoser; Peter Nürnberg; Carole Ober; Raoul Heller

Myopathies are a clinically and etiologically heterogeneous group of disorders that can range from limb girdle muscular dystrophy (LGMD) to syndromic forms with associated features including intellectual disability. Here, we report the identification of mutations in transport protein particle complex 11 (TRAPPC11) in three individuals of a consanguineous Syrian family presenting with LGMD and in five individuals of Hutterite descent presenting with myopathy, infantile hyperkinetic movements, ataxia, and intellectual disability. By using a combination of whole-exome or genome sequencing with homozygosity mapping, we identified the homozygous c.2938G>A (p.Gly980Arg) missense mutation within the gryzun domain of TRAPPC11 in the Syrian LGMD family and the homozygous c.1287+5G>A splice-site mutation resulting in a 58 amino acid in-frame deletion (p.Ala372_Ser429del) in the foie gras domain of TRAPPC11 in the Hutterite families. TRAPPC11 encodes a component of the multiprotein TRAPP complex involved in membrane trafficking. We demonstrate that both mutations impair the binding ability of TRAPPC11 to other TRAPP complex components and disrupt the Golgi apparatus architecture. Marker trafficking experiments for the p.Ala372_Ser429del deletion indicated normal ER-to-Golgi trafficking but dramatically delayed exit from the Golgi to the cell surface. Moreover, we observed alterations of the lysosomal membrane glycoproteins lysosome-associated membrane protein 1 (LAMP1) and LAMP2 as a consequence of TRAPPC11 dysfunction supporting a defect in the transport of secretory proteins as the underlying pathomechanism.


American Journal of Human Genetics | 2014

Mutations in LAMA1 Cause Cerebellar Dysplasia and Cysts with and without Retinal Dystrophy

Kimberly A. Aldinger; Stephen J. Mosca; Martine Tétreault; Jennifer C. Dempsey; Gisele E. Ishak; Taila Hartley; Ian G. Phelps; Ryan E. Lamont; Diana R. O’Day; Donald Basel; Karen W. Gripp; Laura D. Baker; Mark J. Stephan; Francois P. Bernier; Kym M. Boycott; Jacek Majewski; Jillian S. Parboosingh; A. Micheil Innes; Dan Doherty

Cerebellar dysplasia with cysts (CDC) is an imaging finding typically seen in combination with cobblestone cortex and congenital muscular dystrophy in individuals with dystroglycanopathies. More recently, CDC was reported in seven children without neuromuscular involvement (Poretti-Boltshauser syndrome). Using a combination of homozygosity mapping and whole-exome sequencing, we identified biallelic mutations in LAMA1 as the cause of CDC in seven affected individuals (from five families) independent from those included in the phenotypic description of Poretti-Boltshauser syndrome. Most of these individuals also have high myopia, and some have retinal dystrophy and patchy increased T2-weighted fluid-attenuated inversion recovery (T2/FLAIR) signal in cortical white matter. In one additional family, we identified two siblings who have truncating LAMA1 mutations in combination with retinal dystrophy and mild cerebellar dysplasia without cysts, indicating that cysts are not an obligate feature associated with loss of LAMA1 function. This work expands the phenotypic spectrum associated with the lamininopathy disorders and highlights the tissue-specific roles played by different laminin-encoding genes.


American Journal of Human Genetics | 2014

A Peroxisomal Disorder of Severe Intellectual Disability, Epilepsy, and Cataracts Due to Fatty Acyl-CoA Reductase 1 Deficiency

Rebecca Buchert; Hasan Tawamie; Christopher Smith; Steffen Uebe; A. Micheil Innes; Bassam Al Hallak; Arif B. Ekici; Heinrich Sticht; Bernd Schwarze; Ryan E. Lamont; Jillian S. Parboosingh; Francois P. Bernier; Rami Abou Jamra

Rhizomelic chondrodysplasia punctata (RCDP) is a group of disorders with overlapping clinical features including rhizomelia, chondrodysplasia punctata, coronal clefts, cervical dysplasia, congenital cataracts, profound postnatal growth retardation, severe intellectual disability, and seizures. Mutations in PEX7, GNPAT, and AGPS, all involved in the plasmalogen-biosynthesis pathway, have been described in individuals with RCDP. Here, we report the identification of mutations in another gene in plasmalogen biosynthesis, fatty acyl-CoA reductase 1 (FAR1), in two families affected by severe intellectual disability, early-onset epilepsy, microcephaly, congenital cataracts, growth retardation, and spasticity. Exome analyses revealed a homozygous in-frame indel mutation (c.495_507delinsT [p.Glu165_Pro169delinsAsp]) in two siblings from a consanguineous family and compound-heterozygous mutations (c.[787C>T];[1094A>G], p.[Arg263(∗)];[Asp365Gly]) in a third unrelated individual. FAR1 reduces fatty acids to their respective fatty alcohols for the plasmalogen-biosynthesis pathway. To assess the pathogenicity of the identified mutations, we transfected human embryonic kidney 293 cells with plasmids encoding FAR1 with either wild-type or mutated constructs and extracted the lipids from the cells. We screened the lipids with gas chromatography and mass spectrometry and found that all three mutations abolished the reductase activity of FAR1, given that no fatty alcohols could be detected. We also observed reduced plasmalogens in red blood cells in one individual to a range similar to that seen in individuals with RCDP, further supporting abolished FAR1 activity. We thus expand the spectrum of clinical features associated with defects in plasmalogen biosynthesis to include FAR1 deficiency as a cause of syndromic severe intellectual disability with cataracts, epilepsy, and growth retardation but without rhizomelia.


Developmental Biology | 2009

Antagonistic interactions among Plexins regulate the timing of intersegmental vessel formation

Ryan E. Lamont; Erica J Lamont; Sarah J. Childs

The angioblast is an embryonic endothelial cell precursor that migrates long distances to reach its final position, navigating by sensing attractive and repulsive cues from the environment. Members of the semaphorin family have been implicated in controlling the behaviour of angioblast tip cells through repulsive signalling in vitro, but their in vivo roles are less clear. Here we show that zebrafish semaphorin3e (sema3e) is expressed by endothelial cells of the dorsal aorta, primary motoneurons, and endodermal cells. Further, loss of Sema3e leads to delayed exit of angioblasts from the dorsal aorta in ISV formation. Through transplant analysis, we show that Sema3e acts autonomously and non-autonomously in angioblasts to modulate interactions among themselves. The semaphorin receptors, PlexinD1 and PlexinB2, are expressed by zebrafish angioblasts. Loss of plxnB2 results in delayed ISV sprouting identical to that seen in sema3e morphants, while loss of plexinD1 in out of bounds (obd) mutants results in precocious ISV sprouting. Loss of either sema3e or plxnB2 in obd mutants generates an intermediate phenotype, suggesting that PlxnD1 and Sema3e/PlxnB2 antagonize each other to control timing of ISV sprouting. Consistent with this observation, we show that PlxnB2 acts cell autonomously in endothelial cells. This suggests a model where multiple semaphorin-plexin interactions control angioblast sprouting behaviour.


Mechanisms of Development | 2010

Hedgehog signaling via angiopoietin1 is required for developmental vascular stability

Ryan E. Lamont; Wendy Vu; Alyson D. Carter; Fabrizio C. Serluca; Calum A. MacRae; Sarah J. Childs

The molecular pathways by which newly formed, immature endothelial cell tubes remodel to form a mature network of vessels supported by perivascular mural cells are not well understood. The zebrafish iguana (igu) genetic mutant has a mutation in the daz-interacting protein 1 (dzip1), a member of the hedgehog signaling pathway. Loss of dzip1 results in decreased size of the cranial dorsal aortae, ultrastructural defects in perivascular mural cell recruitment and subsequent hemorrhage. Although hedgehog signaling is disrupted in igu mutants, we find no defects in vessel patterning or artery-vein specification. Rather, we show that the loss of angiopoietin1 (angpt1) expression in ventral perivascular mesenchyme is responsible for vascular instability in igu mutants. Over-expression of angpt1 or partial down-regulation of the endogenous Angpt1 antagonist angpt2 rescues hemorrhage. This is the first direct in vivo link between hedgehog signaling and the induction of vascular stability by recruitment of perivascular mural cells through angiopoietin signaling.


Developmental Dynamics | 2007

Expression of Multiple Class Three Semaphorins in the Retina and Along the Path of Zebrafish Retinal Axons

Davon C. Callander; Ryan E. Lamont; Sarah J. Childs; Sarah McFarlane

Retinal ganglion cells (RGCs) extend axons that exit the eye, cross the midline at the optic chiasm, and synapse on target cells in the optic tectum. Class three semaphorins (Sema3s) are a family of molecules known to direct axon growth. We undertook an expression screen to identify sema3s expressed in the retina and/or brain close to in‐growing RGC axons, which might therefore influence retinal‐tectal pathfinding. We find that sema3Aa, 3Fa, 3Ga, and 3Gb are expressed in the retina, although only sema3Fa is present during the time window when the axons extend. Also, we show that sema3Aa and sema3E are present near or at the optic chiasm. Furthermore, sema3C, 3Fa, 3Ga, and 3Gb are expressed in regions of the diencephalon near the path taken by RGC axons. Finally, the optic tectum expresses sema3Aa, 3Fa, 3Fb, and 3Gb. Thus, sema3s are spatiotemporally placed to influence RGC axon growth. Developmental Dynamics 236:2918–2924, 2007.


American Journal of Human Genetics | 2015

RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans

Hanan E. Shamseldin; Anas M. Alazami; Melanie A. Manning; Amal Hashem; Oana Caluseiu; Brahim Tabarki; Edward D. Esplin; Susan Schelley; A. Micheil Innes; Jillian S. Parboosingh; Ryan E. Lamont; Jacek Majewski; Francois P. Bernier; Fowzan S. Alkuraya

Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963(∗)] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration.


Nature Communications | 2014

Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome

Danielle C. Lynch; Timothée Revil; Jeremy Schwartzentruber; Elizabeth J. Bhoj; A. Micheil Innes; Ryan E. Lamont; Edmond G. Lemire; Bernard N. Chodirker; Juliet P. Taylor; Elaine H. Zackai; D. Ross McLeod; Edwin P. Kirk; Julie Hoover-Fong; Leah Fleming; Ravi Savarirayan; Care Rare Canada; Kym M. Boycott; Alex MacKenzie; Michael Brudno; Dennis E. Bulman; David A. Dyment; Jacek Majewski; Loydie A. Jerome-Majewska; Jillian S. Parboosingh; Francois P. Bernier

Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro–costo–mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.

Collaboration


Dive into the Ryan E. Lamont's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Micheil Innes

Alberta Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kym M. Boycott

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

Christopher Smith

Alberta Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Dyment

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge