Jim S. Walker
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jim S. Walker.
Physical Chemistry Chemical Physics | 2012
Rachael E. H. Miles; Jim S. Walker; Daniel R. Burnham; Jonathan P. Reid
The cavity enhanced Raman scattering spectrum recorded from an aerosol droplet provides a unique fingerprint of droplet radius and refractive index, assuming that the droplet is homogeneous in composition. Aerosol optical tweezers are used in this study to capture a single droplet and a Raman fingerprint is recorded using the trapping laser as the source for the Raman excitation. We report here the retrieval of the real part of the refractive index with an uncertainty of ± 0.0012 (better than ± 0.11%), simultaneously measuring the size of the micrometre sized liquid droplet with a precision of better than 1 nm (< ± 0.05% error). In addition, the equilibrium size of the droplet is shown to depend on the laser irradiance due to optical absorption, which elevates the droplet temperature above that of the ambient gas phase. Modulation of the illuminating laser power leads to a modulation in droplet size as the temperature elevation is altered. By measuring induced size changes of <1 nm, we show that the imaginary part of the refractive index can be retrieved even when less than 10 × 10(-9) with an accuracy of better than ± 0.5 × 10(-9). The combination of these measurements allows the complex refractive index of a droplet to be retrieved with high accuracy, with the possibility of making extremely sensitive optical absorption measurements on aerosol samples and the testing of frequently used mixing rules for treating aerosol optical properties. More generally, this method provides an extremely sensitive approach for measuring refractive indices, particularly under solute supersaturation conditions that cannot be accessed by simple bulk-phase measurements.
Journal of Physical Chemistry A | 2010
Jim S. Walker; Jon B. Wills; Jonathan P. Reid; Liangyu Wang; David Topping; Jason R. Butler; Yun Hong Zhang
Holographic optical tweezers are used to make comparative measurements of the hygroscopic properties of single component aqueous aerosol containing sodium chloride and ammonium sulfate over a range of relative humidity from 84% to 96%. The change in RH over the course of the experiment is monitored precisely using a sodium chloride probe droplet with accuracy better than ±0.09%. The measurements are used to assess the accuracy of thermodynamic treatments of the relationship between water activity and solute mass fraction with particular attention focused on the dilute solute limit approaching saturation vapor pressure. The consistency of the frequently used Clegg-Brimblecombe-Wexler (CBW) treatment for predicting the hygroscopic properties of sodium chloride and ammonium sulfate aerosol is confirmed. Measurements of the equilibrium size of ammonium sulfate aerosol are found to agree with predictions to within an uncertainty of ±0.2%. Given the accuracy of treating equilibrium composition, the inconsistencies highlighted in recent calibration measurements of critical supersaturations of sodium chloride and ammonium sulfate aerosol cannot be attributed to uncertainties associated with the thermodynamic predictions and must have an alternative origin. It is concluded that the CBW treatment can allow the critical supersaturation to be estimated for sodium chloride and ammonium sulfate aerosol with an accuracy of better than ±0.002% in RH. This corresponds to an uncertainty of ≤1% in the critical supersaturation for typical supersaturations of 0.2% and above. This supports the view that these systems can be used to accurately calibrate instruments that measure cloud condensation nuclei concentrations at selected supersaturations. These measurements represent the first study in which the equilibrium properties of two particles of chemically distinct composition have been compared simultaneously and directly alongside each other in the same environment.
Journal of Physical Chemistry Letters | 2013
Jim S. Walker; Antonia E. Carruthers; Andrew J. Orr-Ewing; Jonathan P. Reid
A Bessel beam optical trap is combined with continuous wave cavity ringdown spectroscopy to measure the extinction cross section of individual aerosol particles. Particles, ∼1 μm in size, can be captured indefinitely and processes that transform size or refractive index studied. The measured light extinction induced by the particle is shown to depend on the position of the particle in the cavity, allowing accurate measurements of the mode structure of a high finesse optical cavity without significant perturbation. The variation in extinction efficiency of a sodium chloride droplet with relative humidity is shown to agree well with predictions from Mie scattering theory.
Physical Chemistry Chemical Physics | 2014
Chen Cai; Dugald Stewart; Thomas C. Preston; Jim S. Walker; Yun-Hong Zhang; Jonathan P. Reid
We present a new approach to study the equilibrium gas-particle partitioning of volatile and semi-volatile organic components in aqueous aerosol, deriving a correlational analysis method that examines and interprets simultaneous and correlated fluctuations in particle size and composition. From this approach, changes in particle size driven by organic component evaporation can be clearly resolved from size changes driven by hygroscopicity and fluctuations in environmental conditions. The approach is used to interpret measurements of the evaporation of semi-volatile organic components from binary aqueous/organic aerosol and the hygroscopic growth of involatile inorganic aerosol. The measurements have been made by the aerosol optical tweezers technique, which allows the simultaneous retrieval of particle size and refractive index with high accuracy. We suggest that this approach will be particularly valuable for investigating the thermodynamic behaviour of mixed component aqueous aerosol and will allow the accurate derivation of solution phase equilibrium properties that are prone to large uncertainties when measurements are made simply of the change in particle size with gas phase relative humidity.
Physical Chemistry Chemical Physics | 2014
Michael I. Cotterell; Bernard J. Mason; Antonia E. Carruthers; Jim S. Walker; Andrew J. Orr-Ewing; Jonathan P. Reid
A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed.
Journal of Physical Chemistry A | 2014
Bernard J. Mason; Jim S. Walker; Jonathan P. Reid; Andrew J. Orr-Ewing
The extinction cross-sections of individual, optically confined aerosol particles with radii of a micrometer or less can, in principle, be measured using cavity ring-down spectroscopy (CRDS). However, when the particle radius is comparable in magnitude to the wavelength of light stored in a high-finesse cavity, the phenomenological cross-section retrieved from a CRDS experiment depends on the location of the particle in the intracavity standing wave and differs from the Mie scattering cross-section for plane-wave irradiation. Using an evaporating 1,2,6-hexanetriol particle of initial radius ∼1.75 μm confined within the 4.5 μm diameter core of a Bessel beam, we demonstrate that the scatter in the retrieved extinction efficiency of a single particle is determined by its lateral motion, which spans a few wavelengths of the intracavity standing wave used for CRDS measurements. Fits of experimental measurements to Mie calculations, modified to account for the intracavity standing wave, allow precise retrieval of the refractive index of 1,2,6-hexanetriol particles (with relative humidity, RH < 10%) of 1.47824 ± 0.00072.
Aerosol Science and Technology | 2016
Kyle Gorkowski; Hassan Beydoun; Mark Aboff; Jim S. Walker; Jonathan P. Reid; Ryan C. Sullivan
ABSTRACT The phase-separation of mixed aerosol particles and the resulting morphology plays an important role in determining the interactions of liquid aerosols with their gas-phase environment. We present the application of a new aerosol optical tweezers chamber for delivering a uniformly mixed aerosol flow to the trapped droplets position for performing experiments that determine the phase-separation and resulting properties of complex mixed droplets. This facilitates stable trapping when adding additional phases through aerosol coagulation, and reproducible measurements of the droplets equilibration timescale. We demonstrate the trapping of pure organic carbon droplets, which allows us to study the morphology of droplets containing pure hydrocarbon phases to which a second phase is added by coagulation. A series of experiments using simple compounds are presented to establish our ability to use the cavity enhanced Raman spectra to distinguish between homogeneous single-phase, and phase-separated core–shell or partially engulfed morphologies. The core–shell morphology is distinguished by the pattern of the whispering gallery modes (WGMs) in the Raman spectra where the WGMs are influenced by refraction through both phases. A core–shell optimization algorithm was developed to provide a more accurate and detailed analysis of the WGMs than is possible using the homogeneous Mie scattering solution. The unique analytical capabilities of the aerosol optical tweezers provide a new approach for advancing our understanding of the chemical and physical evolution of complex atmospheric particulate matter, and the important environmental impacts of aerosols on atmospheric chemistry, air quality, human health, and climate change. Copyright
Analytical Chemistry | 2017
Allen E. Haddrell; Rachael E. H. Miles; Bryan R. Bzdek; Jonathan P. Reid; Rebecca J. Hopkins; Jim S. Walker
We present a first exploratory study to assess the use of aerosol optical tweezers as an instrument for sampling and detecting accumulation- and coarse-mode aerosol. A subpicoliter aqueous aerosol droplet is captured in the optical trap and used as a sampling volume, accreting mass from a free-flowing aerosol generated by a medical nebulizer or atomizer. Real-time measurements of the initial stability in size, refractive index, and composition of the sampling droplet inferred from Raman spectroscopy confirm that these quantities can be measured with high accuracy and low noise. Typical standard deviations in size and refractive index of the sampling droplet over a period of 200 s are <±2 nm and <±0.0005, respectively, equivalent to <±0.04% in both measured quantities. A standard deviation of <±1% over a 200 s period is achieved in the spontaneous Raman intensity measurement. When sampling coarse-mode aerosol, mass changes of <10 pg can be detected by the sampling droplet as discrete coalescence events. With accumulation-mode aerosol, we show that fluxes as low as 0.068 pg s-1 can be detected over a 50 s period, equivalent to ∼3 pg of sampled material.
Proceedings of SPIE | 2011
Jonathan P. Reid; Allen E. Haddrell; Jim S. Walker; Rory M. Power; David L. Bones; J. F. Davies
Aerosols play a crucial role in many areas of science, ranging from atmospheric chemistry and physics, to drug delivery to the lungs, combustion science and spray drying. The development of new methods to characterise the properties and dynamics of aerosol particles is of crucial importance if the complex role that particles play is to be more fully understood. Optical tweezers provide a valuable new tool to address fundamental questions in aerosol science. Single or multiple particles 1-15 μm in diameter can be manipulated over indefinite timescales using optical tweezing. Linear and non-linear Raman and fluorescence spectroscopies can be used to probe a particles composition and size. In this paper we will report on the latest developments in the use of holographic optical trapping (HOT) to study aerosols. Although widely used to trap and manipulate arrays of particles in the condensed phase, the application of HOT to aerosols is still in its infancy. We will explore the opportunities provided by the formation of complex optical landscapes for controlling aerosol flow, for comparing the properties of multiple particles, for performing the first ever digital microfluidic operations in the aerosol phase and for examining interparticle interactions that can lead to coalescence/coagulation. Although aerosol coagulation is the primary process driving the evolution of particle size distributions, it remains very poorly understood. Using HOT, we can resolve the time-dependent motion of trapped particles and the light scattering from particles during the coalescence process.
Physical Chemistry Chemical Physics | 2014
Jessica W. Lu; Andrew M. J. Rickards; Jim S. Walker; Kerry J. Knox; Rachael E. H. Miles; Jonathan P. Reid; Ruth Signorell
Evaporation studies of single aqueous sucrose aerosol particles as a function of relative humidity (RH) are presented for coarse and fine mode particles down into the submicron size range (600 nm < r < 3.0 μm). These sucrose particles serve as a proxy for biogenic secondary organic aerosols that have been shown to exist, under ambient conditions, in an ultraviscous glassy state, which can affect the kinetics of water mass transport within the bulk phase and hinder particle response to changes in the gas phase water content. A counter-propagating Bessel beams (CPBBs) optical trapping setup is employed to monitor the real-time change in the particle radius with RH decreasing from 75% to 5%. The slow-down of the size change upon each RH step and the deviation from the theoretical equilibrium hygroscopic growth curve indicate the onset of glassy behavior in the RH range of 10-40%. Size-dependent effects were not observed within the uncertainty of the measurements. The influence of the drying time below the glass transition RH on the timescale of subsequent water condensation and re-equilibration for sucrose particles is explored by optical tweezers measurements of micron-sized particles (3 μm < r < 6 μm). The timescale for water condensation and re-equilibration is shown to increase with increasing drying time, i.e. the time over which a viscous particle is dried below 5% RH. These studies demonstrate the importance of the history of the particle conditioning on subsequent water condensation and re-equilibration dynamics of ultraviscous and glassy aerosol particles.