Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin Gao is active.

Publication


Featured researches published by Jin Gao.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis

Hunghao Chu; Jin Gao; Chien Wen Chen; Johnny Huard; Yadong Wang

Enhancing the maturity of the newly formed blood vessels is critical for the success of therapeutic angiogenesis. The maturation of vasculature relies on active participation of mural cells to stabilize endothelium and a basal level of relevant growth factors. We set out to design and successfully achieved robust angiogenesis using an injectable polyvalent coacervate of a polycation, heparin, and fibroblast growth factor-2 (FGF2). FGF2 was loaded into the coacervate at nearly 100% efficiency. In vitro assays demonstrated that the matrix protected FGF2 from proteolytic degradations. FGF2 released from the coacervate was more effective in the differentiation of endothelial cells and chemotaxis of pericytes than free FGF2. One injection of 500 ng of FGF2 in the coacervate elicited comprehensive angiogenesis in vivo. The number of endothelial and mural cells increased significantly, and the local tissue contained more and larger blood vessels with increased circulation. Mural cells actively participated during the whole angiogenic process: Within 7 d of the injection, pericytes were recruited to close proximity of the endothelial cells. Mature vasculature stabilized by vascular smooth muscle cells persisted till at least 4 wk. On the other hand, bolus injection of an identical amount of free FGF2 induced weak angiogenic responses. These results demonstrate the potential of polyvalent coacervate as a new controlled delivery platform.


Biomaterials | 2010

A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties.

Zhengwei You; Haiping Cao; Jin Gao; Paul H. Shin; Billy W. Day; Yadong Wang

Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters (Functionalizable polymer is defined as a polymer with functional groups that readily react with biomolecules and functionalized biomaterial as one already modified with biomolecules.) is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation that produces poly(glycerol sebacate) (PGS) (Wang YD, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol 2002;20(6):602-6). PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications.


Journal of Biomedical Materials Research Part A | 2008

Co‐expression of elastin and collagen leads to highly compliant engineered blood vessels

Jin Gao; Peter M. Crapo; Robert M. Nerem; Yadong Wang

Elastin synthesis and physiologic compliance are significant challenges in blood vessel tissue engineering. Here, we report that a biocompatible elastomeric scaffold can support the co-expression of elastin and collagen, which likely yielded the physiologic compliance in the constructs. A biodegradable elastomer, poly(glycerol sebacate), was fabricated into highly porous tubular scaffolds. Primary baboon arterial smooth muscle cells (SMCs) were seeded in the lumen of the scaffolds followed by a 1-week culture under gentle perfusion. Circulating endothelial progenitor cells (EPCs) isolated from baboon peripheral blood was seeded directly on the smooth muscle layer in the lumen on day 8. The constructs were perfused using a pulsatile flow system for another 2 weeks before characterization. In another set of experiments, the SMCs were cultured for 7 weeks and were co-cultured for 1 week with the EPCs. Constructs obtained using either set of culture conditions contained elastin and collagen: Massons trichrome stain showed a circumferential collagen band in the constructs, and elastin was evident from its characteristic autofluorescence, Verhoffs stain, and amino acid analysis of insoluble remnants after hot alkali digestion. All constructs had a confluent cellular lumen with cells well-dispersed throughout the scaffolds. At physiologic pressures, the compliance of the 8-week construct was comparable to human arteries as observed in pressure-diameter testing. Combination of elastomeric scaffolds, co-culture of EPC and SMC, and mechanical conditioning appears to encourage the expression of a more natural extracellular matrix and lead to physiologically-relevant compliance; both are major challenges in blood vessel tissue engineering.


Biotechnology Progress | 2010

Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs

Anna Marsano; Robert Maidhof; Leo Q. Wan; Yadong Wang; Jin Gao; Nina Tandon; Gordana Vunjak-Novakovic

We investigated the effects of the initial stiffness of a three‐dimensional elastomer scaffold—highly porous poly(glycerol sebacate)—on functional assembly of cardiomyocytes cultured with perfusion for 8 days. The polymer elasticity varied with the extent of polymer cross‐links, resulting in three different stiffness groups, with compressive modulus of 2.35 ± 0.03 (low), 5.28 ± 0.36 (medium), and 5.99 ± 0.40 (high) kPa. Laminin coating improved the efficiency of cell seeding (from 59 ± 15 to 90 ± 21%), resulting in markedly increased final cell density, construct contractility, and matrix deposition, likely because of enhanced cell interaction and spreading on scaffold surfaces. Compact tissue was formed in the low and medium stiffness groups, but not in the high stiffness group. In particular, the low stiffness group exhibited the greatest contraction amplitude in response to electric field pacing, and had the highest compressive modulus at the end of culture. A mathematical model was developed to establish a correlation between the contractile amplitude and the cell distribution within the scaffold. Taken together, our findings suggest that the contractile function of engineered cardiac constructs positively correlates with low compressive stiffness of the scaffold.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A neuroinductive biomaterial based on dopamine

Jin Gao; Yu Mi Kim; Herna Coe; Blaine J. Zern; Barbara Sheppard; Yadong Wang

Chemical messengers such as neurotransmitters play an important role in cell communication, differentiation, and survival. We have designed and synthesized a bioactive biomaterial that derived its biological activity from dopamine. The resultant biodegradable polymer, PCD, has pendent groups bearing dopamine functionalities. Image analysis demonstrated that nerve growth factor-primed rat pheochromocytoma cells (PC12) and explanted rat dorsal root ganglions attached well and displayed substantial neurite outgrowth on the polymer surface. Furthermore, PCD promoted more vigorous neurite outgrowth in PC12 cells than tissue culture polystyrene, laminin, and poly(d-lysine). The histogram of neurite length of PC12 cells showed distinctive patterns on PCD that were absent on the controls. A subset of PC12 cells displayed high filopodium density on PCD. The addition of dopamine in culture medium had little effect on the differentiation of PC12 cells on tissue culture polystyrene. Tyrosine, the precursor of dopamine, did not exhibit this ability to impart specific bioactivity to an analogous polymer. Thus, the dopamine functional group is likely the origin of the inductive effect. PCD did not cause nerve degeneration or fibrous encapsulation when implanted immediately adjacent to the rat sciatic nerves. This work is a step toward creating a diverse family of bioactive materials using small chemical messengers as monomers.


Acta Biomaterialia | 2015

Highly Elastic and Suturable Electrospun Poly(Glycerol Sebacate) Fibrous Scaffolds

Eric M. Jeffries; Robert A. Allen; Jin Gao; Matt Pesce; Yadong Wang

Poly(glycerol sebacate) (PGS) is a thermally-crosslinked elastomer suitable for tissue regeneration due to its elasticity, degradability, and pro-regenerative inflammatory response. Pores in PGS scaffolds are typically introduced by porogen leaching, which compromises strength. Methods for producing fibrous PGS scaffolds are very limited. Electrospinning is the most widely used method for laboratory scale production of fibrous scaffolds. Electrospinning PGS by itself is challenging, necessitating a carrier polymer which can affect material properties if not removed. We report a simple electrospinning method to produce distinct PGS fibers while maintaining the desired mechanical and cytocompatibility properties of thermally crosslinked PGS. Fibrous PGS demonstrated 5 times higher tensile strength and increased suture retention compared to porous PGS foams. Additionally, similar modulus and elastic recovery were observed. A final advantage of fibrous PGS sheets is the ability to create multi-laminate constructs due to fiber bonding that occurs during thermal crosslinking. Taken together, these highly elastic fibrous PGS scaffolds will enable new approaches in tissue engineering and regenerative medicine.


Biotechnology Progress | 2012

Design, synthesis, and biocompatibility of an arginine‐based polyester

Hunghao Chu; Jin Gao; Yadong Wang

Polycations are very useful in biotechnology. However, most existing polycations have high toxicity that significantly limits their clinical translation. We designed poly(ethylene argininylaspartate diglyceride) (PEAD) that is based on arginine, aspartic acid, glycerol, and ethylene glycol. A set of in vitro assays demonstrated that PEAD exhibited no cytotoxicity at 1 mg/mL, which is at least 100 times higher than the widely used polycation‐polyethylenimine. Subcutaneous injection of 1 mg PEAD in rats did not cause an adverse response acutely or after 4 weeks. Zeta potential measurements revealed that PEAD has high affinity to biological polyanions such as DNA and hyaluronic acid. This polycation represents a new platform of biocompatible polycations that may lead to clinical innovations in gene therapy, controlled release, tissue engineering, biosensors, and medical devices


Biomaterials | 2013

Human Progenitor Cell Recruitment via SDF-1α Coacervate-laden PGS Vascular Grafts

Kee-Won Lee; Noah Ray Johnson; Jin Gao; Yadong Wang

Host cell recruitment is crucial for vascular graft remodeling and integration into the native blood vessel; it is especially important for cell-free strategies which rely on host remodeling. Controlled release of growth factors from vascular grafts may enhance host cell recruitment. Stromal cell-derived factor (SDF)-1α has been shown to induce host progenitor cell migration and recruitment; however, its potential in regenerative therapies is often limited due to its short half-life in vivo. This report describes a coacervate drug delivery system for enhancing progenitor cell recruitment into an elastomeric vascular graft by conferring protection of SDF-1α. Heparin and a synthetic polycation are used to form a coacervate, which is incorporated into poly(glycerol sebacate) (PGS) scaffolds. In addition to protecting SDF-1α, the coacervate facilitates uniform scaffold coating. Coacervate-laden scaffolds have high SDF-1α loading efficiency and provide sustained release under static and physiologically-relevant flow conditions with minimal initial burst release. In vitro assays showed that coacervate-laden scaffolds enhance migration and infiltration of human endothelial and mesenchymal progenitor cells by maintaining a stable SDF-1α gradient. These results suggest that SDF-1α coacervate-laden scaffolds show great promise for in situ vascular regeneration.


Tissue Engineering Part A | 2013

Poly (glycerol sebacate): a novel scaffold material for temporomandibular joint disc engineering.

Catherine K. Hagandora; Jin Gao; Yadong Wang; Alejandro J. Almarza

The preponderance of temporomandibular joint (TMJ) disorders involving TMJ disc injury inspires the need to further explore tissue engineering strategies. The objective of this study was to examine the potential of poly (glycerol sebacate) (PGS), a biocompatible, biodegradable elastomer, as a porous scaffold material for the TMJ disc. Goat fibrochondrocytes were seeded on PGS at three seeding densities (25, 50, 100 million cells/mL scaffold), respectively, and cultured for 24 h, 2 weeks, and 4 weeks. The resulting histological, biochemical, and biomechanical properties were determined. Histological staining revealed an abundance of both collagen and glycosaminoglycans (GAG) throughout the high seeding density scaffolds at 4 weeks. There was also a significant increase in the cellular content in all groups over the four-week period, showing that the scaffolds promoted cell attachment and proliferation. The PGS scaffolds supported the deposition of large quantities of extracellular matrix, with differences noted between seeding density groups. At 4 weeks, the medium and high seeding density groups had significantly more collagen per scaffold (181±46 μg and 218±24 μg, respectively) than the low seeding density group (105±28 μg) (p<0.001). At 4 weeks, the medium and high seeding density groups also had a significantly higher GAG content per scaffold (702±253 μg and 773±187 μg, respectively), than the low seeding density group (324±73 μg) (p<0.001). The compression tangent modulus was significantly greater at 4 weeks than 24 h (123.6±86 kPa and 26.2±5 kPa, respectively) (seeding density groups combined) (p<0.001), with no differences between seeding groups at each time point. After 4 weeks, the tangent modulus of the low seeding density group was in a similar range of the goat TMJ disc (180±127 kPa compared to 304±141 kPa, respectively). The results show that cell seeding density and culture time do have an effect on both the biochemical and biomechanical properties of PGS scaffolds. These findings demonstrate that PGS has great potential as a scaffold material for TMJ disc engineering.


Acta Biomaterialia | 2014

A functional polyester carrying free hydroxyl groups promotes the mineralization of osteoblast and human mesenchymal stem cell extracellular matrix.

Xiaoping Bi; Zhengwei You; Jin Gao; Xianqun Fan; Yadong Wang

Functional groups can control biointerfaces and provide a simple way to make therapeutic materials. We recently reported the design and synthesis of poly(sebacoyl diglyceride) (PSeD) carrying a free hydroxyl group in its repeating unit. This paper examines the use of this polymer to promote biomineralization for application in bone tissue engineering. PSeD promoted more mineralization of extracellular matrix secreted by human mesenchymal stem cells and rat osteoblasts than poly(lactic-co-glycolic acid) (PLGA), which is currently widely used in bone tissue engineering. PSeD showed in vitro osteocompatibility and in vivo biocompatibility that matched or surpassed that of PLGA, as well as supported the attachment, proliferation and differentiation of rat osteoblasts and human mesenchymal stem cells. This demonstrates the potential of PSeD for use in bone regeneration.

Collaboration


Dive into the Jin Gao's collaboration.

Top Co-Authors

Avatar

Yadong Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kee-Won Lee

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Xiaochu Ding

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blaine J. Zern

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Charles Sfeir

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Hunghao Chu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Peter M. Crapo

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge