Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kee-Won Lee is active.

Publication


Featured researches published by Kee-Won Lee.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Substantial expression of mature elastin in arterial constructs

Kee-Won Lee; Donna B. Stolz; Yadong Wang

Mature elastin synthesis is a key challenge in arterial tissue engineering. Most engineered vessels lack elastic fibers in the medial layer and those present are poorly organized. The objective of this study is to increase mature elastin synthesis in small-diameter arterial constructs. Adult primary baboon smooth muscle cells (SMCs) were seeded in the lumen of porous tubular scaffolds fabricated from a biodegradable elastomer, poly(glycerol sebacate) (PGS) and cultured in a pulsatile flow bioreactor for 3 wk. We tested the effect of pore sizes on construct properties by histological, biochemical, and mechanical evaluations. Histological analysis revealed circumferentially organized extracellular matrix proteins including elastin and the presence of multilayered SMCs expressing calponin and α-smooth muscle actin. Biochemical analysis demonstrated that the constructs contained mature elastin equivalent to 19% of the native arteries. Mechanical tests indicated that the constructs could withstand up to 200 mmHg burst pressure and exhibited compliance comparable to native arteries. These results show that nontransfected cells in PGS scaffolds in unsupplemented medium produced a substantial amount of mature elastin within 3 wk and the elastic fibers had similar orientation as those in native arteries. The 25–32 μm pore size supported cell organization and elastin synthesis more than larger pore sizes. To our knowledge, there was no prior report of the synthesis of mature and organized elastin in arterial constructs without exogenous factors or viral transduction.


Biomaterials | 2013

Human Progenitor Cell Recruitment via SDF-1α Coacervate-laden PGS Vascular Grafts

Kee-Won Lee; Noah Ray Johnson; Jin Gao; Yadong Wang

Host cell recruitment is crucial for vascular graft remodeling and integration into the native blood vessel; it is especially important for cell-free strategies which rely on host remodeling. Controlled release of growth factors from vascular grafts may enhance host cell recruitment. Stromal cell-derived factor (SDF)-1α has been shown to induce host progenitor cell migration and recruitment; however, its potential in regenerative therapies is often limited due to its short half-life in vivo. This report describes a coacervate drug delivery system for enhancing progenitor cell recruitment into an elastomeric vascular graft by conferring protection of SDF-1α. Heparin and a synthetic polycation are used to form a coacervate, which is incorporated into poly(glycerol sebacate) (PGS) scaffolds. In addition to protecting SDF-1α, the coacervate facilitates uniform scaffold coating. Coacervate-laden scaffolds have high SDF-1α loading efficiency and provide sustained release under static and physiologically-relevant flow conditions with minimal initial burst release. In vitro assays showed that coacervate-laden scaffolds enhance migration and infiltration of human endothelial and mesenchymal progenitor cells by maintaining a stable SDF-1α gradient. These results suggest that SDF-1α coacervate-laden scaffolds show great promise for in situ vascular regeneration.


Tissue Engineering Part A | 2014

Poly(glycerol sebacate) elastomer: a novel material for mechanically loaded bone regeneration.

Samer H. Zaky; Kee-Won Lee; Jin Gao; Adrianna Jensen; John M. Close; Yadong Wang; Alejandro J. Almarza; Charles Sfeir

The selection criteria for potential bone engineering scaffolds are based chiefly on their relative mechanical comparability to mature bone. In this study, we challenge this notion by obtaining full regeneration of a rabbit ulna critical size defect by employing the elastomeric polymer, poly(glycerol sebacate) (PGS). We tested the regeneration facilitated by PGS alone, PGS in combination with hydroxyapatite particles, or PGS seeded with bone marrow stromal cells. We investigated the quantity and quality of the regenerated bone histologically, by microcomputed tomography and by four-point bending flexural mechanical testing at 8 weeks postimplantation. We conclude that the relatively lower stiffness of this biocompatible elastomer allows a load-transducing milieu in which osteogenesis, matrix deposition, and eventual bone maturation can take place. This studys results suggest that PGS elastomer is an auspicious osteoconductive material for the regeneration of bony defects. These results call for an innovative reassessment of the current art of selection for novel bone scaffold materials.


Ultrasound in Medicine and Biology | 2013

Non-invasive Assessment of Elastic Modulus of Arterial Constructs during Cell Culture Using Ultrasound Elasticity Imaging

Debaditya Dutta; Kee-Won Lee; Robert A. Allen; Yadong Wang; John C. Brigham; Kang Kim

Mechanical strength is a key design factor in tissue engineering of arteries. Most existing techniques assess the mechanical property of arterial constructs destructively, leading to sacrifice of a large number of animals. We propose an ultrasound-based non-invasive technique for the assessment of the mechanical strength of engineered arterial constructs. Tubular scaffolds made from a biodegradable elastomer and seeded with vascular fibroblasts and smooth muscle cells were cultured in a pulsatile-flow bioreactor. Scaffold distension was computed from ultrasound radiofrequency signals of the pulsating scaffold via 2-D phase-sensitive speckle tracking. Youngs modulus was then calculated by solving the inverse problem from the distension and the recorded pulse pressure. The stiffness thus computed from ultrasound correlated well with direct mechanical testing results. As the scaffolds matured in culture, ultrasound measurements indicated an increase in Youngs modulus, and histology confirmed the growth of cells and collagen fibrils in the constructs. The results indicate that ultrasound elastography can be used to assess and monitor non-invasively the mechanical properties of arterial constructs.


Journal of Visualized Experiments | 2011

Elastomeric PGS scaffolds in arterial tissue engineering.

Kee-Won Lee; Yadong Wang

Cardiovascular disease is one of the leading cause of mortality in the US and especially, coronary artery disease increases with an aging population and increasing obesity1. Currently, bypass surgery using autologous vessels, allografts, and synthetic grafts are known as a commonly used for arterial substitutes2. However, these grafts have limited applications when an inner diameter of arteries is less than 6 mm due to low availability, thrombotic complications, compliance mismatch, and late intimal hyperplasia3,4. To overcome these limitations, tissue engineering has been successfully applied as a promising alternative to develop small-diameter arterial constructs that are nonthrombogenic, robust, and compliant. Several previous studies have developed small-diameter arterial constructs with tri-lamellar structure, excellent mechanical properties and burst pressure comparable to native arteries5,6. While high tensile strength and burst pressure by increasing collagen production from a rigid material or cell sheet scaffold, these constructs still had low elastin production and compliance, which is a major problem to cause graft failure after implantation. Considering these issues, we hypothesized that an elastometric biomaterial combined with mechanical conditioning would provide elasticity and conduct mechanical signals more efficiently to vascular cells, which increase extracellular matrix production and support cellular orientation. The objective of this report is to introduce a fabrication technique of porous tubular scaffolds and a dynamic mechanical conditioning for applying them to arterial tissue engineering. We used a biodegradable elastomer, poly (glycerol sebacate) (PGS)7 for fabricating porous tubular scaffolds from the salt fusion method. Adult primary baboon smooth muscle cells (SMCs) were seeded on the lumen of scaffolds, which cultured in our designed pulsatile flow bioreactor for 3 weeks. PGS scaffolds had consistent thickness and randomly distributed macro- and micro-pores. Mechanical conditioning from pulsatile flow bioreactor supported SMC orientation and enhanced ECM production in scaffolds. These results suggest that elastomeric scaffolds and mechanical conditioning of bioreactor culture may be a promising method for arterial tissue engineering.


Acta Biomaterialia | 2017

Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.

Samer H. Zaky; Kee-Won Lee; Jin Gao; Adrianna Jensen; Kostas Verdelis; Yadong Wang; Alejandro J. Almarza; Charles Sfeir

Mechanical load influences bone structure and mass. Arguing the importance of load-transduction, we investigated the mechanisms inducing bone formation using an elastomeric substrate. We characterized Poly (glycerol sebacate) (PGS) in vitro for its mechanical properties, compatibility with osteoprogenitor cells regarding adhesion, proliferation, differentiation under compression versus static cultures and in vivo for the regeneration of a rabbit ulna critical size defect. The load-transducing properties of PGS were compared in vitro to a stiffer poly lactic-co-glycolic-acid (PLA/PGA) scaffold of similar porosity and interconnectivity. Under cyclic compression for 7days, we report focal adhesion kinase overexpression on the less stiff PGS and upregulation of the transcription factor Runx2 and late osteogenic markers osteocalcin and bone sialoprotein (1.7, 4.0 and 10.0 folds increase respectively). Upon implanting PGS in the rabbit ulna defect, histology and micro-computed tomography analysis showed complete gap bridging with new bone by the PGS elastomer by 8weeks while minimal bone formation was seen in empty controls. Immunohistochemical analysis demonstrated the new bone to be primarily regenerated by recruited osteoprogenitors cells expressing periostin protein during early phase of maturation similar to physiological endochondral bone development. This study confirms PGS to be osteoconductive contributing to bone regeneration by recruiting host progenitor/stem cell populations and as a load-transducing substrate, transmits mechanical signals to the populated cells promoting differentiation and matrix maturation toward proper bone remodeling. We hence conclude that the material properties of PGS being closer to osteoid tissue rather than to mineralized bone, allows bone maturation on a substrate mechanically closer to where osteoprogenitor/stem cells differentiate to develop mature load-bearing bone. SIGNIFICANCE OF SIGNIFICANCE The development of effective therapies for bone and craniofacial regeneration is a foremost clinical priority in the mineralized tissue engineering field. Currently at risk are patients seeking treatment for craniofacial diseases, traumas and disorders including birth defects such as cleft lip and palate, (1 in 525 to 714 live births), craniosynostosis (300-500 per 1,000,000 live births), injuries to the head and face (20 million ER visits per year), and devastating head and neck cancers (8000 deaths and over 30,000 new cases per year). In addition, approximately 6.2 million fractures occur annually in the United States, of which 5-10% fail to heal properly, due to delayed or non-union [1], and nearly half of adults aged 45-65 have moderate to advanced periodontitis with associated alveolar bone loss, which, if not reversed, will lead to the loss of approximately 6.5 teeth/individual [2]. The strategies currently available for bone loss treatment largely suffer from limitations in efficacy or feasibility, necessitating further development and material innovation. Contemporary materials systems themselves are indeed limited in their ability to facilitate mechanical stimuli and provide an appropriate microenvironment for the cells they are designed to support. We propose a strategy which aims to leverage biocompatibility, biodegradability and material elasticity in the creation of a cellular niche. Within this niche, cells are mechanically stimulated to produce their own extracellular matrix. The hypothesis that mechanical stimuli will enhance bone regeneration is supported by a wealth of literature showing the effect of mechanical stimuli on bone cell differentiation and matrix formation. Using mechanical stimuli, to our knowledge, has not been explored in vivo in bone tissue engineering applications. We thus propose to use an elastomeric platform, based on poly(glycerol sebacate (PGS), to mimic the natural biochemical environment of bone while enabling the transmission of mechanical forces. In this study we report the materials load-transducing ability as well as falling mechanically closer to bone marrow and osteoid tissue rather than to mature bone, allowed osteogenesis and bone maturation. Defying the notion of selecting bone regeneration scaffolds based on their relative mechanical comparability to mature bone, we consider our results in part novel for the new application of this elastomer and in another fostering for reassessment of the current selection criteria for bone scaffolds.


Journal of the Royal Society Interface | 2017

Degradation and erosion mechanisms of bioresorbable porous acellular vascular grafts: an in vitro investigation

Piyusha S. Gade; Kee-Won Lee; Blaise N. Pfaff; Yadong Wang; Anne M. Robertson

A fundamental mechanism of in situ tissue regeneration from biodegradable synthetic acellular vascular grafts is the effective interplay between graft degradation, erosion and the production of extracellular matrix. In order to understand this crucial process of graft erosion and degradation, we conducted an in vitro investigation of grafts (n = 4 at days 1, 4, 7, 10 each) exposed to enzymatic degradation. Herein, we provide constitutive relationships for mass loss and mechanical properties based on much-needed experimental data. Furthermore, we formulate a mathematical model to provide a physics-based framework for understanding graft erosion. A novel finding is that despite their porous nature, grafts lost mass exponentially via surface erosion demonstrating a 20% reduction in outer diameter and no significant change in apparent density. A diffusion based, concentration gradient-driven mechanistic model of mass loss through surface erosion was introduced which can be extended to an in vivo setting through the use of two degradation parameters. Furthermore, notably, mechanical properties of degrading grafts did not scale with mass loss. Thus, we introduced a damage function scaling a neo-Hookean model to describe mechanical properties of the degrading graft; a refinement to existing mass-dependent growth and remodelling (G&R) models. This framework can be used to improve accuracy of well-established G&R theories in biomechanics; tools that predict evolving structure–function relationships of neotissues and guide graft design.


Journal of Biomaterials Science-polymer Edition | 2018

Microwave-assisted facile fabrication of porous poly (glycerol sebacate) scaffolds

Soo Hyon Lee; Kee-Won Lee; Piyusha S. Gade; Anne M. Robertson; Yadong Wang

Abstract The biodegradable elastomeric polyester poly(glycerol sebacate) (PGS) was developed for soft-tissue engineering. It has been used in various research applications such as wound healing, cartilage tissue engineering, and vascular grafting due to its biocompatibility and elastomeric properties. However conventional PGS manufacture is generally limited by the laborious reaction conditions needed for curing which requires elevated reaction temperatures, high vacuum and multi-day reaction times. In this study, we developed a microwave irradiation methodology to fabricate PGS scaffolds under milder conditions with curing times that are 8 times faster than conventional methods. In particular, we determined microwave reaction temperatures and times for maximum crosslinking of PGS elastomers, demonstrating that PGS is fully crosslinked using gradual heating up to 160 °C for 3 h. Porosity and mechanical properties of these microwave-cured PGS elastomers were shown to be similar to PGS elastomers fabricated by the conventional polycondensation method (150 °C under 30 Torr for 24 h). To move one step closer to clinical application, we also examined the biocompatibility of microwave-cured PGS using in vitro cell viability assays with primary baboon arterial smooth muscle cells (SMCs). These combined results show microwave curing of PGS is a viable alternative to conventional curing.


Journal of Materials Chemistry B | 2017

Tyramine functionalization of poly(glycerol sebacate) increases the elasticity of the polymer

Xiaochu Ding; Yen-Lin Wu; Jin Gao; Albin Wells; Kee-Won Lee; Yadong Wang

Poly(glycerol sebacate) (PGS) is an elastomer used widely in tissue engineering studies due to good biocompatibility. Hereby we report a tyramine functionalized PGS called PGS-TA. Tyramine adds a stronger physical bonding capability to PGS-TA. Tensile tests showed that the softness and toughness of the material were similar to PGS. However, PGS-TA demonstrated 16-folds increase of elastic deformations compared to PGS processed under identical conditions. The in vitro studies demonstrated that the viability, and metabolic activity of baboon smooth muscle cells were the same as those on tissue culture polystyrene. Porous subcutaneous implants of PGS-TA substantially degraded in vivo over two weeks, showing good biodegradability and biocompatibility. We expect PGS-TA to be useful for applications in tissues and organs that are subjected to large reversible mechanical deformations.


Biomaterials | 2018

A biodegradable synthetic graft for small arteries matches the performance of autologous vein in rat carotid arteries

Kee-Won Lee; Piyusha S. Gade; Liwei Dong; Zhaoxiang Zhang; Ali Mubin Aral; Jin Gao; Xiaochu Ding; Chelsea E.T. Stowell; Muhammad Umer Nisar; Kang Kim; Dieter P. Reinhardt; Mario G. Solari; Vijay S. Gorantla; Anne M. Robertson; Yadong Wang

Autologous veins are the most widely used grafts for bypassing small arteries in coronary and peripheral arterial occlusive diseases. However, they have limited availability and cause donor-site morbidity. Here, we report a direct comparison of acellular biodegradable synthetic grafts and autologous veins as interposition grafts of rat carotid arteries, which is a good model for clinically relevant small arteries. Notably, extensive but transient infiltration of circulating monocytes at day 14 in synthetic grafts leads to a quickly-resolved inflammation and arterial-like tissue remodeling. The vein graft exhibits a similar inflammation phase except the prolonged presence of inflammatory monocytes. The walls of the remodeled synthetic graft contain many circumferentially aligned contractile non-proliferative smooth muscle cells (SMCs), collagen and elastin. In contrast, the walls of the vein grafts contain disorganized proliferating SMCs and thicken over time, suggesting the onset of stenosis. At 3 months, both grafts have a similar patency, extracellular matrix composition, and mechanical properties. Furthermore, synthetic grafts exhibit recruitment and re-orientation of newly synthesized collagen fibers upon mechanical loading. To our knowledge, this is the first demonstration of a biodegradable synthetic vascular graft with a performance similar to an autologous vein in small artery grafting.

Collaboration


Dive into the Kee-Won Lee's collaboration.

Top Co-Authors

Avatar

Yadong Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Jin Gao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kang Kim

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blaise N. Pfaff

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Charles Sfeir

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge